Home
Class 12
MATHS
If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B...

If `A=|(2,2,-4),(-4,2,-4),(2,-1,5)|` and `B=|(1,-1,0),(2,3,4),(0,1,2)|` then find BA and use ths to sovle the system of equations `y+2z=7, x-y=3` and `2x+3y+4z=17`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Calculate the product \( BA \) Given matrices: \[ A = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] We need to compute \( BA \): \[ BA = B \cdot A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. **First row, first column**: \[ 1 \cdot 2 + (-1) \cdot (-4) + 0 \cdot 2 = 2 + 4 + 0 = 6 \] 2. **First row, second column**: \[ 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot (-1) = 2 - 2 + 0 = 0 \] 3. **First row, third column**: \[ 1 \cdot (-4) + (-1) \cdot (-4) + 0 \cdot 5 = -4 + 4 + 0 = 0 \] 4. **Second row, first column**: \[ 2 \cdot 2 + 3 \cdot (-4) + 4 \cdot 2 = 4 - 12 + 8 = 0 \] 5. **Second row, second column**: \[ 2 \cdot 2 + 3 \cdot 2 + 4 \cdot (-1) = 4 + 6 - 4 = 6 \] 6. **Second row, third column**: \[ 2 \cdot (-4) + 3 \cdot (-4) + 4 \cdot 5 = -8 - 12 + 20 = 0 \] 7. **Third row, first column**: \[ 0 \cdot 2 + 1 \cdot (-4) + 2 \cdot 2 = 0 - 4 + 4 = 0 \] 8. **Third row, second column**: \[ 0 \cdot 2 + 1 \cdot 2 + 2 \cdot (-1) = 0 + 2 - 2 = 0 \] 9. **Third row, third column**: \[ 0 \cdot (-4) + 1 \cdot (-4) + 2 \cdot 5 = 0 - 4 + 10 = 6 \] Putting it all together, we have: \[ BA = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I \] ### Step 2: Use the result to solve the system of equations The system of equations is: 1. \( y + 2z = 7 \) 2. \( x - y = 3 \) 3. \( 2x + 3y + 4z = 17 \) We can express this in matrix form as: \[ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 7 \\ 17 \end{pmatrix} \] Let \( B \) be the coefficient matrix and \( X \) be the variable matrix: \[ B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \\ 2 & 3 & 4 \end{pmatrix}, \quad Z = \begin{pmatrix} -3 \\ 7 \\ 17 \end{pmatrix} \] From the earlier calculation, we know that: \[ BA = 6I \implies B^{-1} = \frac{1}{6}A \] Thus, we can find \( X \): \[ X = B^{-1}Z = \frac{1}{6}A \cdot Z \] Calculating \( A \cdot Z \): \[ A \cdot Z = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \begin{pmatrix} -3 \\ 7 \\ 17 \end{pmatrix} \] Calculating each element: 1. First row: \[ 2 \cdot (-3) + 2 \cdot 7 + (-4) \cdot 17 = -6 + 14 - 68 = -60 \] 2. Second row: \[ -4 \cdot (-3) + 2 \cdot 7 + (-4) \cdot 17 = 12 + 14 - 68 = -42 \] 3. Third row: \[ 2 \cdot (-3) + (-1) \cdot 7 + 5 \cdot 17 = -6 - 7 + 85 = 72 \] Thus: \[ A \cdot Z = \begin{pmatrix} -60 \\ -42 \\ 72 \end{pmatrix} \] Now, multiplying by \( \frac{1}{6} \): \[ X = \frac{1}{6} \begin{pmatrix} -60 \\ -42 \\ 72 \end{pmatrix} = \begin{pmatrix} -10 \\ -7 \\ 12 \end{pmatrix} \] ### Final Result: The solution to the system of equations is: \[ x = -10, \quad y = -7, \quad z = 12 \]

To solve the given problem, we will follow these steps: ### Step 1: Calculate the product \( BA \) Given matrices: \[ A = \begin{pmatrix} 2 & 2 & -4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If A=((2,2,-4),(-4,2,-4),(2,-1,5))and B=((1,-1,0),(2,3,4),(0,1,2)) , find AB. Hence, solve the following equations x-y=3,2x+3y+4z=17 and y+2z=7

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

If A=((2,-3,5),(3,2,-4),(1,1,-2)) find A^(-1) . Use it to solve the system of equations 2x-3y+5z=11 , 3x+2y-4z=-5 and x+y-2z=-3

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

Given that A= [(1,-1,0),(2,3,4),(0,1,2)] and B= [(2,2,-4),(-4,2,-4),(2,-1,5)] , find AB. Using the result solve the following system of equation: x-y=3, 2x+ 3y + 4z=17 and y+2z= 7

If A=[(1,2,-3),(2,3,2),(3,-3,-4)] then find A^-1 and hence solve the follwoing equations: x+2y-3z=4, 2x+3y+2z=2 and 3x-3y-4z=11

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1,-2,-2),( 2, 1, 3)] and use it to solve the system of equations: x-y+z=4,\ \ x-2y-2z=9,\ \ 2x+y+3z=1.

If A=[(2,-3,5),(3,2,-4),(1,1,-2)] , find A^(-1) and hence solve the system of linear equations: \ 2x-3y+5z=11 ,\ \ 3x+2y-4z=5,\ \ x+y-2z=-3