Home
Class 12
MATHS
If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|...

If `a+b+c!=` and `|(a,b,c),(b,c,a),(c,a,b)|=0` then prove that `a=b=c`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( a = b = c \) given that \( a + b + c \neq 0 \) and the determinant \( |(a,b,c),(b,c,a),(c,a,b)| = 0 \), we can follow these steps: ### Step 1: Write the determinant The determinant can be expressed as: \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] Given that \( D = 0 \). ### Step 2: Apply row transformation We can perform a row operation by transforming \( R_1 \) to \( R_1 + R_2 + R_3 \): \[ D = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ b & c & a \\ c & a & b \end{vmatrix} \] ### Step 3: Factor out \( a+b+c \) We can factor out \( a+b+c \) from the first row: \[ D = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} \] Since \( D = 0 \), we have: \[ (a+b+c) \cdot \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \] ### Step 4: Analyze the determinant Since \( a + b + c \neq 0 \), we must have: \[ \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix} = 0 \] ### Step 5: Perform column operations Now, we will perform column operations to simplify the determinant: 1. Transform \( C_1 \) to \( C_1 - C_2 \) and \( C_2 \) to \( C_2 - C_3 \): \[ \begin{vmatrix} 1 & 0 & 0 \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} \] ### Step 6: Expand the determinant Now, we can expand the determinant: \[ D = 1 \cdot \begin{vmatrix} b-c & c-a \\ c-a & a-b \end{vmatrix} \] Calculating this gives: \[ (b-c)(a-b) - (c-a)(c-a) = 0 \] This simplifies to: \[ (b-c)(a-b) - (c-a)^2 = 0 \] ### Step 7: Rearranging the equation Rearranging gives: \[ (b-c)(a-b) = (c-a)^2 \] ### Step 8: Analyze the implications Since \( (c-a)^2 \geq 0 \), we can conclude that \( (b-c)(a-b) \) must also be non-negative. ### Step 9: Conclude the equality The only way for both sides to be equal and non-negative is if: 1. \( b = c \) 2. \( a = b \) 3. \( a = c \) Thus, we conclude: \[ a = b = c \] ### Final Conclusion Hence, we have proved that \( a = b = c \). ---

To prove that \( a = b = c \) given that \( a + b + c \neq 0 \) and the determinant \( |(a,b,c),(b,c,a),(c,a,b)| = 0 \), we can follow these steps: ### Step 1: Write the determinant The determinant can be expressed as: \[ D = \begin{vmatrix} a & b & c \\ b & c & a \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If a+b+c!=0 and |a b c b c a c a b|=0 , then prove that a=b=cdot

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a , b ,c in Ra n da(a+b)+b(b+c)+c(c+a)=0 then a. a=b=c=0 b. a+b+c+=0 c. (a-b)^2+(b-c)^2+(c-a)^2=0 d. a^3+b^3+c^3+3a b c=0

If : a^2+b^2+c^2-a b-b c-c a=0 , prove that a=b=c

If a ,\ b ,\ c are real numbers such that |(b+c,c+a ,a+b),( c+a,a+b,b+c),(a+b,b+c,c+a)|=0 , then show that either a+b+c=0 or, a=b=c .

If (a-b),\ (b-c),(c-a) are in G.P. then prove that (a+b+c)^2=3(a b+b c+c a)

If 1/a+1/(a-b)+1/c+1/(c-b)= 0 and a + c-b!=0 , then prove that a, b, c are in H.P.

Prove that : |{:(a,b,c),(b,c,a),(c,a,b):}|=3 a b c-a^(3)-b^(3)-c^(3)

Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(3)

If a+b+c!=0 and , \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{vmatrix} =0 then prove that a=b=c