Home
Class 12
MATHS
If x+y+z=0 prove that | xa yb zc yc ...

If `x+y+z=0` prove that `| xa yb zc yc za xb zb xc ya y|=x y z|a b c c a b b c a|`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Since `x+y+z=0` also we have to prove
`|(xa,yb,zc),(yc,za,xb),(zb,xc,ya)|=xyz|(a,b,c),(c,a,b),(b,c,a)|`
`:. LHS =|(xa,yb,zc),(yc,za,xb),(zb,xc,ya)|`
`=xa(za.ya-xb.xc)-ub(yc.ya-xb.b)+zc(yc.xc-za-zb)`
`=xa(a^(2)yz-x^(2)bc)-yb(y^(2)ac-b^(2)xz)+zc(c^(2)xy-z^(2)ab)`
`=xyza^(3)-x^(3)abc-y^(3)abc+b^(3)xyz+c^(3)xyz-z^(3)abc` `=x yz(a^(3)+b^(3)+c^(3))-abc(x^(3)+y^(3)+z^(3))`
`=x yz (a^(3)+b^(3)+c^(3))-abc(3x yz)`
`[ :' x+y+z=0impliesx^(3)+y^(3)+z^(3)-3xyz]`
`=x yz(a^(3)+b^(3)+c^(3)-3abc)`............i
Now `RHS=x yz|(a,b,c),(c,a,b),(b,c,a)|=xyz|(a+b+c,b,c),(a+b+c,a,b),(a+b+c,c,a)|[ :'C_(1)toC_(1)+C_(2)+C_(3)]`
`=x yz(a+b+c)|(1,b,c),(1,a,b),(1,c,a)|` [taking `(a+b+c)` common from `C_(1)`]
`=x yz(a+b+c)|(0,b-c,c-a),(0,a-c,b-a),(1,c,a)|`
Expanding along `C_(1)` `[ :' R_(1)toR_(1)-R_(3)` and `R_(2)toR_(2)-R_(3)]`
`=x yz(a+b+c)[(b-c)(b-a)-(a-c)(c-a)]`
`=x yz(a+b+c)(b^(2)-ab-bc+ac+a^(2)+c^(2)-2ac)`
`=x yz (a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)`
`=xyz(a^(3)+b^(3)+c^(3)-3abc)`.................ii
From Eqs i and ii
LHS `=` RHS
`implies |(xa,yb,zc),(yc,za,xb),(zb,xc,ya)|=x yz|(a,b,c),(c,a,b),(b,c,a)|` Hence proved.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=0 , prove that |[xa, yb,zc],[yc, za, xb], [zb, xc, ya]|=x y z|[a, b, c],[c ,a, b],[b ,c,c]|

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2+2b x y+c y^2) .

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

If x+y+z=0=a+b+c, then |{:(xa,yb,zc),(yc,za,xb),(zb,xc,ya):}|=

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Show that |a b c a+2x b+2y c+2z x y z|=0

Show that: |b+c c+a a+b q+r r+p p+q y+z z+x x+y|=2|a b c p q r x y z|