Home
Class 12
MATHS
The value of |(a-b,b+c,a),(b-a,c+a,b),(c...

The value of `|(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)|` is

A

`a^(3)+b^(3)+c^(3)`

B

`3bc`

C

`a^(3)+b^(3)+c^(3)-3abc`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c \end{vmatrix} \] we will perform a series of transformations to simplify the determinant. ### Step 1: Column Transformation We will perform the column operation \( C_2 \rightarrow C_2 + C_3 \). This means we will add the third column to the second column. \[ D = \begin{vmatrix} a-b & (b+c) + a & a \\ b-a & (c+a) + b & b \\ c-a & (a+b) + c & c \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} a-b & b+c+a & a \\ b-a & c+a+b & b \\ c-a & a+b+c & c \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that the second column can be factored out as \( A + B + C \): \[ D = (a+b+c) \begin{vmatrix} a-b & 1 & a \\ b-a & 1 & b \\ c-a & 1 & c \end{vmatrix} \] ### Step 3: Row Transformation Now, we will perform row operations to simplify the determinant further. We will perform \( R_1 \rightarrow R_1 - R_2 \) and \( R_2 \rightarrow R_2 - R_3 \): \[ D = (a+b+c) \begin{vmatrix} (a-b) - (b-a) & 1 - 1 & a - b \\ (b-a) - (c-a) & 1 - 1 & b - c \\ c-a & 1 & c \end{vmatrix} \] This simplifies to: \[ D = (a+b+c) \begin{vmatrix} 2(a-b) & 0 & a-b \\ b-c & 0 & b-c \\ c-a & 1 & c \end{vmatrix} \] ### Step 4: Factor Out Common Terms Again From the first row, we can factor out \( 2(a-b) \) and from the second row, we can factor out \( (b-c) \): \[ D = (a+b+c)(a-b)(b-c) \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ c-a & 1 & c \end{vmatrix} \] ### Step 5: Evaluate the Remaining Determinant The determinant now has two identical rows, which means it evaluates to zero: \[ D = (a+b+c)(a-b)(b-c) \cdot 0 = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]

To find the value of the determinant \[ D = \begin{vmatrix} a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)| , is

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0

If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}| is

Write the value of the following determinant |(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

The value of the determinant |[a-b,b+c,a],[b-c,c+a,b],[c-a,a+b,c]| is

If a ,b ,c are sides of a scalene triangle, then value of |[a, b, c] ,[b, c, a] ,[c, a, b]| is positive (b) negative non-positive (d) non-negative

The value of the determinant |[a-b,b+c, a], [b-a, c+a, b], [c-a, a+b, c]| is (a) a^3+b^3+c^3 (b) 3\ b c (c) a^3+b^3+c^3-3a b c (d) none

The value of (a-b)(a+b)+(b-c)(b+c)+(c+a)(c-a) is :