Home
Class 12
MATHS
The determinat Delta=|(b^2-ab,b-c,bc-ac)...

The determinat `Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)|` equals

A

`abc(b-c)(c-a)(a-b)`

B

`(b-c)(c-a)(a-b)`

C

`(a+b+c)(b-c)(c-a)(a-b)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ac & c - a & ab - a^2 \end{vmatrix} \), we will follow these steps: ### Step 1: Factor out common terms from the columns Observe that we can factor out common terms from the columns of the determinant. 1. From the first column, we can factor out \( b - a \). 2. From the second column, we can factor out \( b - a \). 3. From the third column, we can factor out \( c - a \). This gives us: \[ \Delta = (b - a)^2 \cdot (c - a) \begin{vmatrix} b & b - c & c \\ a & a - b & b \\ 0 & c - a & a \end{vmatrix} \] ### Step 2: Simplify the determinant Now we can simplify the determinant further. Notice that we can perform column operations to simplify it. We can replace \( C_1 \) with \( C_1 - C_3 \): \[ \Delta = (b - a)^2 (c - a) \begin{vmatrix} b - c & b - c & c \\ a - b & a - b & b \\ 0 & c - a & a \end{vmatrix} \] ### Step 3: Identify equal columns From the determinant, we can see that the first and second columns are now equal: \[ \Delta = (b - a)^2 (c - a) \begin{vmatrix} b - c & b - c & c \\ a - b & a - b & b \\ 0 & c - a & a \end{vmatrix} \] ### Step 4: Conclude the determinant value Since two columns of the determinant are equal, the value of the determinant is zero: \[ \Delta = 0 \] ### Final Answer Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \] ---

To solve the determinant \( \Delta = \begin{vmatrix} b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ac & c - a & ab - a^2 \end{vmatrix} \), we will follow these steps: ### Step 1: Factor out common terms from the columns Observe that we can factor out common terms from the columns of the determinant. 1. From the first column, we can factor out \( b - a \). 2. From the second column, we can factor out \( b - a \). 3. From the third column, we can factor out \( c - a \). ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Using properties of determinant, if |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = mua^2b^2c^2 , find mu

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

The determinant "det(A)"= |[ a^(2) +x,ab,ac], [ab, b^(2) +x,bc,] [ac,bc, c^(2) +x]| is divisible by a. x b. x^2 c. x^3 d. none of these

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .