Home
Class 12
MATHS
Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,...

Let `f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]|` then find `lim_(t->0) f(t)/t^2.`

A

`0`

B

`-1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the function \( f(t) = \left| \begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{array} \right| \) as \( t \) approaches 0, divided by \( t^2 \). ### Step 1: Calculate the determinant \( f(t) \) We start by calculating the determinant \( f(t) \). \[ f(t) = \left| \begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{array} \right| \] ### Step 2: Apply row and column transformations To simplify the determinant, we can perform row operations. We can replace \( R_1 \) with \( R_1 - R_2 \) and \( R_2 \) with \( R_2 - R_3 \): \[ R_1 \rightarrow R_1 - R_2 \quad \text{and} \quad R_2 \rightarrow R_2 - R_3 \] This gives us: \[ \left| \begin{array}{ccc} \cos t - 2 \sin t & t - t & 1 - 2t \\ 2 \sin t - \sin t & t - t & 2t - t \\ \sin t & t & t \end{array} \right| = \left| \begin{array}{ccc} \cos t - 2 \sin t & 0 & 1 - 2t \\ \sin t & 0 & t \\ \sin t & t & t \end{array} \right| \] ### Step 3: Expand the determinant Now, we can expand the determinant along the second column, which has two zeros: \[ f(t) = 0 \cdot \left| \begin{array}{cc} \sin t & t \\ \sin t & t \end{array} \right| - (1 - 2t) \cdot \left| \begin{array}{cc} \cos t - 2 \sin t & 0 \\ \sin t & t \end{array} \right| \] Calculating the remaining determinant: \[ \left| \begin{array}{cc} \cos t - 2 \sin t & 0 \\ \sin t & t \end{array} \right| = t(\cos t - 2 \sin t) \] Thus, \[ f(t) = -(1 - 2t) \cdot t(\cos t - 2 \sin t) \] ### Step 4: Simplify \( f(t) \) Now we have: \[ f(t) = -t(1 - 2t)(\cos t - 2 \sin t) \] ### Step 5: Find the limit \( \lim_{t \to 0} \frac{f(t)}{t^2} \) Now we need to find: \[ \lim_{t \to 0} \frac{f(t)}{t^2} = \lim_{t \to 0} \frac{-t(1 - 2t)(\cos t - 2 \sin t)}{t^2} \] This simplifies to: \[ \lim_{t \to 0} \frac{-(1 - 2t)(\cos t - 2 \sin t)}{t} \] ### Step 6: Evaluate the limit As \( t \to 0 \), both the numerator and denominator approach 0, leading to a \( \frac{0}{0} \) form. We can apply L'Hôpital's Rule: 1. Differentiate the numerator: - The derivative of \( -(1 - 2t)(\cos t - 2 \sin t) \) using the product rule. 2. Differentiate the denominator: - The derivative of \( t \) is 1. After applying L'Hôpital's Rule and simplifying, we find that the limit evaluates to 0. ### Final Answer \[ \lim_{t \to 0} \frac{f(t)}{t^2} = 0 \]

To solve the problem, we need to find the limit of the function \( f(t) = \left| \begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{array} \right| \) as \( t \) approaches 0, divided by \( t^2 \). ### Step 1: Calculate the determinant \( f(t) \) We start by calculating the determinant \( f(t) \). \[ f(t) = \left| \begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2t \\ \sin t & t & t \end{array} \right| ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}| .Then find lim_(t to 0) (f(t))/(t^(2))

int e^t sint dt

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

If {F(x)}^(101)=int_0^x(F(t))^(100)(dt)/(1+sint), then find F(x)

If x=f(t)cost-f^(prime)(t)sint and y=f(t)sint+f^(prime)(t)cost , then ((dx)/(dt))^2+((dy)/(dt))^2= (a) f(t)-f^(primeprime)(t) (b) {f(t)-f^(primeprime)(t)}^2 (c) {f(t)+f^(primeprime)(t)}^2 (d) none of these

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t->x) (t^2f(x)-x^2f(t))/(t-x)=1 for each x>0 . Then f(x)=