Home
Class 12
MATHS
The maximum value of |(1,1,1),(1,1+sinth...

The maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|` is `1/2`

A

`1/2`

B

`(sqrt(3))/2`

C

`sqrt(2)`

D

`(2sqrt(3))/4`

Text Solution

Verified by Experts

The correct Answer is:
A

Since
`Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)|`
`=|(0,0,1),(0,sintheta,1),(costheta,0,1)| [ :'C_(1)toC_(1)-C_(3)` and `C_(2)toC_(2)-C_(3)]`
`=1(sintheta.costheta)`
`=1/2.2sin theta cos theta=1/2sin 2theta`
Since the maximum value of `sin 2theta` is 1. So, for maximum valoue of `theta` should be `45^(@)`
`:. Delta=1/2sin 2.45^(@)`
`=1/2sin90^(@)=1/2.1=1/2`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)| is ( theta is real) (A) 1/2 (B) (sqrt(3))/2 (C) sqrt(2) (D) -(sqrt(3))/2

Find the maximum value of |[1, 1, 1],[ 1, 1+sintheta,1],[ 1, 1, 1+costheta]|

if theta in R then maximum value of Delta =|{:(1,,1,,1),(1 ,,1+sintheta,,1),(1 ,, 1,,1+cos theta):}| is

The maximum value of =|[1, 1, 1], [1, 1+sintheta,1], [1+costheta,1, 1]| (theta is real) (a) 1/2 (b) (sqrt(3))/2 (c) sqrt(2) (d) -(sqrt(3))/2

If sintheta=(1)/(3) , then costheta will be

If theta is an acute angle such that tan^2theta=8/7 , then the value of ((1+sintheta)(1-sintheta))/((1+costheta)(1-costheta) is (a) 7/8 (b) 8/7 (c) 7/4 (d) (64)/(49)

Show : (1+tan^2theta)(1+sintheta)(1-sintheta) = 1

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s