Home
Class 12
MATHS
If x , y , z are different from zero and...

If `x , y , z` are different from zero and `|[1+x,1 ,1], [1, 1+y,1], [1, 1, 1+z]|=0` then the value of `x^(-1)+y^(-1)+z^(-1)` is (a)`x y z` (b) `x^(-1)y^(-1)z^(-1)` (c) `-x-y-z` (d) `-1`

A

`xyz`

B

`x^(-1)y^(-1)z^(-1)`

C

`-x-y-z`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
D

We have `|(1+x,1,1),(1,1+y,1),(1,1,1+z)|=0`
Applying `C_(1)toC_(1)-C_(3)` and `C_(2)toC_(2)-C_(3)`
`implies |(x,0,1),(0,y,1),(-z,-z,1+z)|=0`
Expanding along `R_(1)`
`x[y(a+z)+z]-0+1(yz)=0`
`impliesx(y+yz+z)+yz=0`
`implies xy+xyz+xz+yz=0`
`= (xy)/(x y)=(x yz)/(x yz)+(xz)/(x yz)+(yz)/(x yz)=0` [on dividing `(xyz)` from both sides]
`implies 1/x+1/y+1/z+1=0`
`implies 1/x+1/y+1/z=-1`
`:. x^(-1)+y^(-1)+z^(-1)=-1`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x ,y ,z are different from zero and "Delta"=|[a, b-y ,c-z],[ a-x, b ,c-z],[ a-x, b-y, c]|=0, then the value of the expression a/x+b/y+c/z is a. 0 b. -1 c. 1 d. 2

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x+y+z=1 , then the least value of (1)/(x)+(1)/(y)+(1)/(z) , is

If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0 , then x^(-1)+y^(-1)+z^(-1) is equal to a.1 b.-1 c.-3 d. none of these