Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove the following: `|xx+y x+2y\ x+2y xx+y x+y x+2y x|=9y^2(x+y)`

A

`9x^(2)(x+y)`

B

`9y^(2)(x+y)`

C

`3y^(2)(x+y)`

D

`7x^(2)(x+y)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `|(x,x+y,x+2y),(x+2y,x,x+y),(x+y,x+2y,x)|`
`=|(3(x+y),x+y,y),(3(x+y),x,y),(3(x+y),x+2y,-2y)| [ :' C_(1)toC_(1)+C_(2)+C_(3)` and `C_(3)toC_(3)-C_(2)]`
`=3(x+y)|(1,(x+y),y),(1,x,y),(1,(x+2y),-2y)|` [taking `3(x+y)` common from first column]
`=3(x+y)|(0,y,0),(1,x,y),(1,(x+2y),-2y)| [ :' R_(1)toR_(1)-R_(2)]`
Expanding along `R_(1)`
`=3(xy)[-y(-2y-y)]`
`=3y^(2).3(x+y)=9y^(2)(x+y)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following |[x,x+y,x+2y],[x+2y,x,x+y],[x+y,x+2y,x]|=9y^2(x+y)

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

By using properties of determinants. Show that: (i) |x+4 2x2x2xx+4 2x2x2xx+4|=(5x-4)(4-x)^2 (ii) |y+k y y y y+k y y y y+k|=k^2(2ydotk)^2

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)