Home
Class 12
MATHS
Using properties of determinant. Prove t...

Using properties of determinant. Prove that `|[sinA,cosA,sinA+cosB],[sinB,cosA,sinB+cosB],[sinC,cosA,sinC+cosB]|=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

True
Since `|(sinA,cosA,sinA+cosB),(sinB,cosA,sinB+cosB),(sinC,cosA,sinC+cosB)|=|(sinA,cosA,sinA),(sinB,cosA,sinB),(sinc,cosA,sincC)|+|(sincA,cosA,cosB),(sinB,cosA,cosB),(sinC,cosA,cosB)|`
`=0|(sinA,cosA,cosB),(sinB,cosA,cosB),(sinc,cosA,cosB)|`
[since in first determinant `C_(1)` and `C_(3)` are identicals]
`=cosA.cosB|(sinA,1,1),(sinB,1,1),(sinC,1,1)|`
[taking `cosA` common from `C_(2)` and `cosB` common from `C_(3)`]
`=0` [since `C_(2)` and `C_(3)` are identicals]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)

Using properties of determinants, show that ABC is isosceles if |(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC)|=0

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0 then B =

Prove that: (1+cosA+sinA)/(1+cosA-sinA)=(1+sinA)/(cosA)

Prove that cosA+cosB+cosC=1+r/R

Prove that cosA+cosB+cosC=1+r/R

Prove that (1+sinA-cosA)^2+(1-sinA+cosA)^2=4(1-sinA.cosA)

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tan(A/2)

Using properties of determinants, show that triangle ABC is isosceles, if : |(1,1,1),(1+cosA, 1+cosB, 1+cosC),(sqrecosA+cosA, cossqrB+cosB, cossqurC+cosC)| =0