Home
Class 12
MATHS
If Delta=|(a,p,x),(b,q,y),(c,r,z)|=16 th...

If `Delta=|(a,p,x),(b,q,y),(c,r,z)|=16` then `Delta_(1)=|(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)|=32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta_1 \) given that \( \Delta = |(a,p,x),(b,q,y),(c,r,z)| = 16 \). ### Step-by-Step Solution: 1. **Understanding the Determinant**: We start with the determinant \( \Delta = |(a,p,x),(b,q,y),(c,r,z)| \). We know that \( \Delta = 16 \). 2. **Transforming the Columns**: We need to evaluate \( \Delta_1 = |(p+x,a+x,a+p),(q+y,b+y,b+q),(r+z,c+z,c+r)| \). We can apply the transformation to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ \Delta_1 = |(2p + x + a, a + x, a + p), (2q + y + b, b + y, b + q), (2r + z + c, c + z, c + r)| \] 3. **Factoring Out Common Terms**: We can factor out a 2 from the first column: \[ \Delta_1 = 2 |(p + x + a, a + x, a + p), (q + y + b, b + y, b + q), (r + z + c, c + z, c + r)| \] 4. **Further Transformations**: Now, we apply the transformation: \[ C_1 \rightarrow C_1 - C_2 \quad \text{and} \quad C_2 \rightarrow C_2 - C_3 \] This results in: \[ \Delta_1 = 2 |(p, a + x - (a + p), a + p), (q, b + y - (b + q), b + q), (r, c + z - (c + r), c + r)| \] Simplifying gives: \[ = 2 |(p, x - p, a + p), (q, y - q, b + q), (r, z - r, c + r)| \] 5. **Identifying Identical Rows**: We can see that if we split this determinant into two parts, we will have: \[ 2 \times pqr \times |(1, 1, 1), (1, 1, 1), (1, 1, 1)| \] Since the last two rows are identical, the determinant evaluates to zero. 6. **Final Evaluation**: Thus, we are left with: \[ \Delta_1 = 2 \times 16 = 32 \] ### Conclusion: Therefore, the statement that \( \Delta_1 = 32 \) is true.

To solve the problem, we need to evaluate the determinant \( \Delta_1 \) given that \( \Delta = |(a,p,x),(b,q,y),(c,r,z)| = 16 \). ### Step-by-Step Solution: 1. **Understanding the Determinant**: We start with the determinant \( \Delta = |(a,p,x),(b,q,y),(c,r,z)| \). We know that \( \Delta = 16 \). 2. **Transforming the Columns**: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Delta=|{:(p,q,r),(p+2a,q+2b,r+2c),(a,b,c):}| then

If |[a, p, x],[ b, q, y], [c, r, z]|=16 , then the value of |[p+x, a+x, a+p], [q+y ,b+y, b+q],[ r+z, c+z, c+r]| is (a) 4 (b) 8 (c) 16 (d) 32

If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)| , then

If Delta_1=|[a, b, c],[ x, y, z],[ p, q, r]| and Delta_2=|[q,-b, y],[-p, a,-x],[ r,-c, z]|, without expanding or evaluating Delta_1 and Delta_2 , show that Delta_1+Delta_2=0

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)] , prove that P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-a)+q/(q-b)+r/(r-c)=

If A=[(a, b, c), (x, y, z), (p, q, r)], B=[(q,-b, y),(-p, a,-x),(r,-c, z)] and if A is invertible, then which of the following is not true? (a) |A|=|B| (b) |A|=-|B| (c) |adj A|=|adj B| (d) A is invertible if and only if B is invertible

If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=