Home
Class 12
MATHS
The maximum value of |(1,1,1),(1,1+sinth...

The maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|` is `1/2` Is it true or false

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the maximum value of the determinant \( |(1,1,1),(1,1+\sin\theta,1),(1,1,1+\cos\theta)| \) is \( \frac{1}{2} \), we can follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 & 1 & 1 + \cos\theta \end{vmatrix} \] ### Step 2: Apply row transformations To simplify the determinant, we can perform row operations. We will transform \( R_1 \) to \( R_1 - R_2 \) and \( R_2 \) to \( R_2 - R_3 \): \[ R_1 \rightarrow R_1 - R_2 \implies (1 - 1, 1 - (1 + \sin\theta), 1 - 1) = (0, -\sin\theta, 0) \] \[ R_2 \rightarrow R_2 - R_3 \implies (1 - 1, (1 + \sin\theta) - 1, 1 - (1 + \cos\theta)) = (0, \sin\theta, -\cos\theta) \] Now the determinant becomes: \[ D = \begin{vmatrix} 0 & -\sin\theta & 0 \\ 0 & \sin\theta & -\cos\theta \\ 1 & 1 & 1 + \cos\theta \end{vmatrix} \] ### Step 3: Expand the determinant We can expand the determinant along the first row: \[ D = 0 \cdot \begin{vmatrix} \sin\theta & -\cos\theta \\ 1 & 1 + \cos\theta \end{vmatrix} - (-\sin\theta) \cdot \begin{vmatrix} 0 & -\cos\theta \\ 1 & 1 + \cos\theta \end{vmatrix} \] The first term is zero, so we focus on the second term: \[ D = \sin\theta \cdot \begin{vmatrix} 0 & -\cos\theta \\ 1 & 1 + \cos\theta \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} 0 & -\cos\theta \\ 1 & 1 + \cos\theta \end{vmatrix} = 0 \cdot (1 + \cos\theta) - (-\cos\theta) \cdot 1 = \cos\theta \] Thus, we have: \[ D = \sin\theta \cdot \cos\theta \] ### Step 4: Use the double angle identity Using the double angle identity, we can express this as: \[ D = \frac{1}{2} \sin(2\theta) \] ### Step 5: Find the maximum value The maximum value of \( \sin(2\theta) \) is \( 1 \), which occurs when \( 2\theta = 90^\circ \) or \( \theta = 45^\circ \). Therefore, the maximum value of \( D \) is: \[ D_{\text{max}} = \frac{1}{2} \cdot 1 = \frac{1}{2} \] ### Conclusion Thus, the statement that the maximum value of the determinant is \( \frac{1}{2} \) is **true**. ---

To determine whether the maximum value of the determinant \( |(1,1,1),(1,1+\sin\theta,1),(1,1,1+\cos\theta)| \) is \( \frac{1}{2} \), we can follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)| is ( theta is real) (A) 1/2 (B) (sqrt(3))/2 (C) sqrt(2) (D) -(sqrt(3))/2

Find the maximum value of |[1, 1, 1],[ 1, 1+sintheta,1],[ 1, 1, 1+costheta]|

if theta in R then maximum value of Delta =|{:(1,,1,,1),(1 ,,1+sintheta,,1),(1 ,, 1,,1+cos theta):}| is

The maximum value of =|[1, 1, 1], [1, 1+sintheta,1], [1+costheta,1, 1]| (theta is real) (a) 1/2 (b) (sqrt(3))/2 (c) sqrt(2) (d) -(sqrt(3))/2

If sintheta=(1)/(3) , then costheta will be

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If theta is an acute angle such that tan^2theta=8/7 , then the value of ((1+sintheta)(1-sintheta))/((1+costheta)(1-costheta) is (a) 7/8 (b) 8/7 (c) 7/4 (d) (64)/(49)

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s