Home
Class 12
MATHS
If vec a , vec ba n d vec c are unit co...

If ` vec a , vec ba n d vec c` are unit coplanar vectors, then the scalar triple product `[2 vec a- vec b2 vec b- vec c2 vec c- vec a]` is `0` b. `1` c. `-sqrt(3)` d. `sqrt(3)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos
  • VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

    CENGAGE ENGLISH|Exercise DPP 2.4|20 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

If vec a , vec b , and vec c are three mutually orthogonal unit vectors, then the triple product [ vec a+ vec b+ vec c vec a+ vec b vec b+ vec c] equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.