Home
Class 12
MATHS
(p^^~q)^^(~p^^q) is...

`(p^^~q)^^(~p^^q)` is

A

a tautology

B

a contradiction

C

neither a tautology nor a contradiction

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the expression \((p \land \neg q) \land (\neg p \land q)\) is a tautology, contradiction, or neither, we can evaluate it step by step using a truth table. ### Step 1: Define the Variables Let: - \(p\) be a proposition that can be either true (T) or false (F). - \(q\) be another proposition that can also be either true (T) or false (F). ### Step 2: List All Possible Truth Values We will consider all possible combinations of truth values for \(p\) and \(q\): 1. \(p = T\), \(q = T\) 2. \(p = T\), \(q = F\) 3. \(p = F\), \(q = T\) 4. \(p = F\), \(q = F\) ### Step 3: Calculate \(\neg p\) and \(\neg q\) For each combination, we will find the values of \(\neg p\) and \(\neg q\): - If \(p = T\), then \(\neg p = F\) - If \(p = F\), then \(\neg p = T\) - If \(q = T\), then \(\neg q = F\) - If \(q = F\), then \(\neg q = T\) ### Step 4: Evaluate \(p \land \neg q\) and \(\neg p \land q\) Now we will evaluate the two components of our expression: 1. \(p \land \neg q\) 2. \(\neg p \land q\) ### Step 5: Combine the Results Finally, we will evaluate the entire expression \((p \land \neg q) \land (\neg p \land q)\). ### Truth Table | \(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \land \neg q\) | \(\neg p \land q\) | \((p \land \neg q) \land (\neg p \land q)\) | |-------|-------|------------|------------|---------------------|---------------------|-----------------------------------------------| | T | T | F | F | F | F | F | | T | F | F | T | T | F | F | | F | T | T | F | F | T | F | | F | F | T | T | F | F | F | ### Step 6: Analyze the Results From the truth table, we can see that the final column (which represents \((p \land \neg q) \land (\neg p \land q)\)) has all values as False (F). This means that the expression is always false regardless of the truth values of \(p\) and \(q\). ### Conclusion Since the expression \((p \land \neg q) \land (\neg p \land q)\) is false for all possible truth values of \(p\) and \(q\), it is a **contradiction**.

To determine whether the expression \((p \land \neg q) \land (\neg p \land q)\) is a tautology, contradiction, or neither, we can evaluate it step by step using a truth table. ### Step 1: Define the Variables Let: - \(p\) be a proposition that can be either true (T) or false (F). - \(q\) be another proposition that can also be either true (T) or false (F). ### Step 2: List All Possible Truth Values ...
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise concept application|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

((p^^q)vv(pvv~q))^^(~p^^~q)) is equivalent to (A) ~p^^~q (B) p^^~q (C) pvv~q (D) ~pvvq

(p ^^ ~q) ^^ (~p vv q) is

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q

Match the following column s: Column-I " " Column-II Negation of (~ p->q) is " " p. [~(p v q)]^^[p v(~ p)] Negation of (pharrq) " " q. (p^^~ q)vv(~ p^^q) Negation of (pvvq)i s " " r. ~ p^^~ q pharrq is equivalent to " " s. ~ p^^~ q

Using truth tables, prove the following equivalences : (1) ~pvvq-=~(p^^q)to[~pvv(~pvvq)] (2) p""iffq-=(p^^q)vv(~p^^~q) (3) (p^^q)tor-=pto(qtor)

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .

The logically equivalent proposition of phArrq is (p^^q)vv(p^^q) b. (p=>q)^^(p=>q) c. (p^^q)vv(p=>q) d. (p^^q)(pvvq)

The logically equivalent proposition of phArrq is a. (p^^q)vv(p^^q) b. (p=>q)^^(q=>p) c. (p^^q)vv(p=>q) d. (p^^q)(pvvq)

Show that ( p vee q) ^^ ( ~ p ^^ ~ q) is a contradion .