Home
Class 12
MATHS
(p^^~q) ^^ (~pvvq) is...

`(p^^~q) ^^ (~pvvq)` is

A

a contradiction

B

a tautology

C

either (1) or (2)

D

neither (1) nor (2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression `(p ∧ ¬q) ∧ (¬p ∨ q)`, we will construct a truth table to evaluate the expression step by step. ### Step 1: Identify the variables We have two variables: `p` and `q`. ### Step 2: List all possible truth values Since there are two variables, the possible combinations of truth values for `p` and `q` are: 1. `p = True`, `q = True` 2. `p = True`, `q = False` 3. `p = False`, `q = True` 4. `p = False`, `q = False` ### Step 3: Calculate ¬q and ¬p We need to find the negations of `q` and `p` for each combination: - If `q = True`, then `¬q = False` - If `q = False`, then `¬q = True` - If `p = True`, then `¬p = False` - If `p = False`, then `¬p = True` ### Step 4: Create the truth table We will now create a truth table to evaluate the expression `(p ∧ ¬q) ∧ (¬p ∨ q)`. | p | q | ¬p | ¬q | p ∧ ¬q | ¬p ∨ q | (p ∧ ¬q) ∧ (¬p ∨ q) | |-------|-------|-------|-------|--------|--------|---------------------| | True | True | False | False | False | True | False | | True | False | False | True | True | False | False | | False | True | True | False | False | True | False | | False | False | True | True | False | True | False | ### Step 5: Analyze the results From the truth table, we can see that the final column `(p ∧ ¬q) ∧ (¬p ∨ q)` has all values as `False`. This means that the expression is always false, which indicates that it is a contradiction. ### Conclusion The expression `(p ∧ ¬q) ∧ (¬p ∨ q)` is a contradiction.

To solve the expression `(p ∧ ¬q) ∧ (¬p ∨ q)`, we will construct a truth table to evaluate the expression step by step. ### Step 1: Identify the variables We have two variables: `p` and `q`. ### Step 2: List all possible truth values Since there are two variables, the possible combinations of truth values for `p` and `q` are: 1. `p = True`, `q = True` ...
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise concept application|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos

Similar Questions

Explore conceptually related problems

(p ^^ ~q) ^^ (~p vv q) is

(p^^~q)^^(~p^^q) is

(p^^~q)^^(~p^^q) is

The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a) (~p^^~q)^^r (b) ~p vv r (c) (p^^r)^^~q (d) (p^^~q)vvr

Observe the following statements I : The dual of [ ~p ^^ q)] vv [ p ^^ {~(q vv ~s)}] is [~(p vv q)] ^^ [p vv{~(q ^^ ~s)}] II : The dual of ~p ^^ [(~q) ^^ (p vv q) ^^ ~r] is ~p vv[~q) vv(p ^^ q) vv ~r] The true statements in the above is/are :

Show that (i) p to (pvvq) is a tautology (ii) (pvvq) ^^(~ p ^^~q) is a contradiction

Construct the truth table for the followings statements : (a) (p^^q) to ~ p " " (b) (p^^q) to (pvvq) (c) (p^^q) to r " " (d) [p^^(~r)] to (qvvr)

((p^^q)vv(pvv~q))^^(~p^^~q)) is equivalent to (A) ~p^^~q (B) p^^~q (C) pvv~q (D) ~pvvq

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

Let p and q be any two propositons Statement 1 : (p rarr q) harr q vv ~p is a tautology Statement 2 : ~(~p ^^ q) ^^ (p vv q) harr p is fallacy