Home
Class 12
MATHS
In the truth table for the statements (...

In the truth table for the statements ` ( p to q) harr(~p vvq)`, the last column has the truth value in the following order

A

(a) TTTT

B

(b) FTFT

C

(c) TTFF

D

(d) FFFF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the truth table for the statements \( (p \to q) \leftrightarrow (\neg p \lor q) \), we will follow these steps: ### Step 1: Create the Truth Table We need to create a truth table that includes the columns for \( p \), \( q \), \( \neg p \), \( p \to q \), \( \neg p \lor q \), and finally \( (p \to q) \leftrightarrow (\neg p \lor q) \). | \( p \) | \( q \) | \( \neg p \) | \( p \to q \) | \( \neg p \lor q \) | \( (p \to q) \leftrightarrow (\neg p \lor q) \) | |---------|---------|---------------|----------------|----------------------|--------------------------------------------------| | T | T | F | T | T | ? | | T | F | F | F | F | ? | | F | T | T | T | T | ? | | F | F | T | T | T | ? | ### Step 2: Fill in the Negation of \( p \) Negation of \( p \) is simply the opposite of \( p \): - If \( p \) is True (T), then \( \neg p \) is False (F). - If \( p \) is False (F), then \( \neg p \) is True (T). So, we fill in the column for \( \neg p \): | \( p \) | \( q \) | \( \neg p \) | |---------|---------|---------------| | T | T | F | | T | F | F | | F | T | T | | F | F | T | ### Step 3: Calculate \( p \to q \) The implication \( p \to q \) is only false when \( p \) is true and \( q \) is false. Otherwise, it is true: - For \( (T, T) \): True - For \( (T, F) \): False - For \( (F, T) \): True - For \( (F, F) \): True So, we fill in the column for \( p \to q \): | \( p \) | \( q \) | \( \neg p \) | \( p \to q \) | |---------|---------|---------------|----------------| | T | T | F | T | | T | F | F | F | | F | T | T | T | | F | F | T | T | ### Step 4: Calculate \( \neg p \lor q \) The disjunction \( \neg p \lor q \) is true if at least one of \( \neg p \) or \( q \) is true: - For \( (T, T) \): True - For \( (T, F) \): False - For \( (F, T) \): True - For \( (F, F) \): True So, we fill in the column for \( \neg p \lor q \): | \( p \) | \( q \) | \( \neg p \) | \( p \to q \) | \( \neg p \lor q \) | |---------|---------|---------------|----------------|----------------------| | T | T | F | T | T | | T | F | F | F | F | | F | T | T | T | T | | F | F | T | T | T | ### Step 5: Calculate \( (p \to q) \leftrightarrow (\neg p \lor q) \) The biconditional \( (p \to q) \leftrightarrow (\neg p \lor q) \) is true if both sides have the same truth value: - For \( (T, T) \): True - For \( (F, F) \): True - For \( (T, F) \): False - For \( (T, T) \): True So, we fill in the last column: | \( p \) | \( q \) | \( \neg p \) | \( p \to q \) | \( \neg p \lor q \) | \( (p \to q) \leftrightarrow (\neg p \lor q) \) | |---------|---------|---------------|----------------|----------------------|--------------------------------------------------| | T | T | F | T | T | T | | T | F | F | F | F | T | | F | T | T | T | T | T | | F | F | T | T | T | T | ### Final Truth Values The last column has the truth values in the order: T, T, T, T. ### Conclusion The correct answer is that the last column has the truth value in the order: **T, T, T, T**.

To solve the question regarding the truth table for the statements \( (p \to q) \leftrightarrow (\neg p \lor q) \), we will follow these steps: ### Step 1: Create the Truth Table We need to create a truth table that includes the columns for \( p \), \( q \), \( \neg p \), \( p \to q \), \( \neg p \lor q \), and finally \( (p \to q) \leftrightarrow (\neg p \lor q) \). | \( p \) | \( q \) | \( \neg p \) | \( p \to q \) | \( \neg p \lor q \) | \( (p \to q) \leftrightarrow (\neg p \lor q) \) | |---------|---------|---------------|----------------|----------------------|--------------------------------------------------| | T | T | F | T | T | ? | ...
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise concept application|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos

Similar Questions

Explore conceptually related problems

Construct the truth table for the statements ~ p vv q.

Statements (p to q) harr (q to p)

Construct the truth table for the statement ~(p^^~q).

Construct a truth table for the statement p ^^ (~q).

Truth table for the following is-

Give the truth table of ~ p vee q

Write down the truth table for the compound statements : (~pvvq)^^(~p^^~q)

Construct the truth table for compound statement (p wedge q)wedge~p

Construct the truth table for the compound proposition q rArr [~pvvq]

Write the truth value of the statement: 1 is complex number