Home
Class 12
MATHS
Arrange log(2) 5, log(0.5) 5, log(7) 5,...

Arrange ` log_(2) 5, log_(0.5) 5, log_(7) 5, log_(3) 5` in decreasing order.

Text Solution

AI Generated Solution

To arrange the logarithmic values \( \log_{2} 5, \log_{0.5} 5, \log_{7} 5, \log_{3} 5 \) in decreasing order, we will analyze each logarithm step by step. ### Step 1: Analyze \( \log_{2} 5 \) Let \( x = \log_{2} 5 \). This means \( 5 = 2^{x} \). Since \( 4 < 5 < 8 \), we can write: \[ 2^2 < 5 < 2^3 ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.10|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.11|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.8|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Show that log_(3) 9+ log_(3) 3= log_(5) 125

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

let N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3) , then N equals

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

a=log_5 3+log_7 5+log_9 7

Find the value of : log_(0.2) 5

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

If (log_(3)x)(log_(5)3)=3 , find x.

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32