Home
Class 12
MATHS
Find the value of x satisfying the equat...

Find the value of x satisfying the equations `log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1` and `xy^(2)=9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( \log_{3}(\log_{2} x) + \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = 1 \) and \( xy^{2} = 9 \), we will follow these steps: ### Step 1: Rewrite the second logarithm The equation can be rewritten using the change of base formula. The logarithm \( \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) \) can be expressed as: \[ \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = -\log_{3}(\log_{\frac{1}{2}} y) \] Thus, the original equation becomes: \[ \log_{3}(\log_{2} x) - \log_{3}(\log_{\frac{1}{2}} y) = 1 \] ### Step 2: Combine the logarithms Using the properties of logarithms, we can combine the two logarithmic terms: \[ \log_{3}\left(\frac{\log_{2} x}{\log_{\frac{1}{2}} y}\right) = 1 \] ### Step 3: Exponentiate to eliminate the logarithm Exponentiating both sides gives: \[ \frac{\log_{2} x}{\log_{\frac{1}{2}} y} = 3 \] ### Step 4: Rewrite \( \log_{\frac{1}{2}} y \) We know that \( \log_{\frac{1}{2}} y = -\log_{2} y \). Substituting this into the equation gives: \[ \frac{\log_{2} x}{-\log_{2} y} = 3 \] This can be rearranged to: \[ \log_{2} x = -3 \log_{2} y \] ### Step 5: Rewrite in exponential form This implies: \[ \log_{2} x = \log_{2} y^{-3} \] Thus, we can equate the arguments: \[ x = \frac{1}{y^{3}} \] ### Step 6: Substitute into the second equation Now, substitute \( x \) into the second equation \( xy^{2} = 9 \): \[ \left(\frac{1}{y^{3}}\right)y^{2} = 9 \] This simplifies to: \[ \frac{y^{2}}{y^{3}} = 9 \quad \Rightarrow \quad \frac{1}{y} = 9 \quad \Rightarrow \quad y = \frac{1}{9} \] ### Step 7: Find \( x \) Now that we have \( y \), substitute back to find \( x \): \[ x = \frac{1}{y^{3}} = \frac{1}{\left(\frac{1}{9}\right)^{3}} = \frac{1}{\frac{1}{729}} = 729 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{729} \]

To solve the equations \( \log_{3}(\log_{2} x) + \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = 1 \) and \( xy^{2} = 9 \), we will follow these steps: ### Step 1: Rewrite the second logarithm The equation can be rewritten using the change of base formula. The logarithm \( \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) \) can be expressed as: \[ \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = -\log_{3}(\log_{\frac{1}{2}} y) \] Thus, the original equation becomes: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9 . The value of 1/y lies in the interval

Consider the system of equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9 . The value of x in the interval

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

Find the values of x satisfying the inequalities : log_(0.1) (4x^2-1)gtlog_(0.1) 3x

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0