Home
Class 12
MATHS
Let a= log(3) 20, b = log(4) 15 and c =...

Let `a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12`. Then find the value of `1/(a+1)+1/(b+1)+1/(c+1)`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \) where \( a = \log_3 20 \), \( b = \log_4 15 \), and \( c = \log_5 12 \). ### Step-by-Step Solution: 1. **Rewrite \( a + 1 \), \( b + 1 \), and \( c + 1 \)**: \[ a + 1 = \log_3 20 + 1 = \log_3 20 + \log_3 3 = \log_3 (20 \cdot 3) = \log_3 60 \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.32|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.33|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.30|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If log_(4)m=1.5 , then find the value of m.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If log_(sqrt8) b = 3 1/3 , then find the value of b.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If (log)_4 5=aa n d(log)_5 6=b , then (log)_3 2 is equal to 1/(2a+1) (b) 1/(2b+1) (c) 2a b+1 (d) 1/(2a b-1)