Home
Class 12
MATHS
If y= 2^((1)/(log(x)4)) then prove that ...

If y= `2^((1)/(log_(x)4))` then prove that `x=y^(2)`.

Text Solution

Verified by Experts

`2^((1)/(log_(x)4))`
`:." "y=2^(log_(4)x)" "rArry=2^((1)/(2)log_(2)x)`
`rArr y^(2) = 2^(log_(2)x)" "("as "y gt 0)`
` rArr y^(2) = x `
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.40|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.41|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.38|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*(d^2y)/(dx^2)+x*dy/dx+y=0 .

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2 .

If y = sqrt(1+sqrt(1+x^(4))) , prove that y * (y^(2) - 1)(dy)/(dx) = x^(3) .

If y = (x-1)log(x-1)-(x+1)log(x+1) , prove that : dy/dx = log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-ILLUSTRATION 1.39
  1. If y= 2^((1)/(log(x)4)) then prove that x=y^(2).

    Text Solution

    |