Home
Class 12
MATHS
Solve |x-1|^((log(10) x)^2-log(10) x^2=|...

Solve `|x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3`

Text Solution

AI Generated Solution

To solve the equation \( |x-1|^{(\log_{10} x)^2 - \log_{10} x^2} = |x-1|^3 \), we can follow these steps: ### Step 1: Simplify the Exponent The exponent on the left side can be simplified using the properties of logarithms: \[ (\log_{10} x)^2 - \log_{10} x^2 = (\log_{10} x)^2 - 2 \log_{10} x \] This can be factored as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.54|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.55|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.52|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve (x+1)^(log_(10) (x+1))=100(x+1)

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Solution set of x^((log_(10)x)^(2)-3log_(10)x+1)gt 1000 for x epsilon R is

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve : log_(1- x )(3-x)=log_(3-x)(1-x)

Solve log_(10)(x^(2)-2x-2) le 0 .

Solve for x : log_(10)x = -2 .

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

Solve the following inequation . (xv) x^((log_10x)^2-3log_10x+1)gt1000

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-ILLUSTRATION 1.53
  1. Solve |x-1|^((log(10) x)^2-log(10) x^2=|x-1|^3

    Text Solution

    |