Home
Class 12
MATHS
Solve 2 log(3) x - 4 log(x) 27 le 5....

Solve ` 2 log_(3) x - 4 log_(x) 27 le 5`.

Text Solution

AI Generated Solution

To solve the inequality \( 2 \log_{3} x - 4 \log_{x} 27 \leq 5 \), we will follow these steps: ### Step 1: Rewrite the logarithm We can use the change of base formula for logarithms. Recall that \( \log_{a} b = \frac{1}{\log_{b} a} \). Thus, we can rewrite \( \log_{x} 27 \) as \( \frac{1}{\log_{27} x} \). So, we have: \[ 2 \log_{3} x - 4 \cdot \frac{1}{\log_{27} x} \leq 5 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.66|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.67|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.64|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve log_(3)|x|gt 2 .

Solve log_(3)(x-2) le 2 .

Solve log_(2)(x-1) gt 4 .

Solve log_(2)|x| lt 3

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve : 1+ 2 log_(2+x)5=log_5(x+2)

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve for x: log_(2)x le 2/(log_(2)x-1)

Solve log_(2)|4-5x| gt 2 .