Home
Class 12
MATHS
Solve: (1/2)^(log^(10a^2))+2>3/(2^((log)...

Solve: `(1/2)^(log^(10a^2))+2>3/(2^((log)_(10)(-a)))`

Text Solution

AI Generated Solution

To solve the inequality \[ \left(\frac{1}{2}\right)^{\log_{10}(a^2)} + 2 > \frac{3}{2^{\log_{10}(-a)}} \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.71|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.72|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.69|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

The derivative of (log)_(10)x w.r.t. x^2 is equal to 1/(2x^2)log_e 10 (b) 2/(x^2)(log)_(10)e 1/(2x^2)(log)_(10)e (d) none of these

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

The value [(1)/(6)((2log_(10)(1728))/(1+(1)/(2)log_(10)(0.36)+(1)/(3)log_(10)8))^(1//2)]^(-1) is :

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

Which of the following numbers are positive? a. (log)_(log3 2)(1/2) b. (log)_2(2/3)^(-2//3) c. (log)_(10)(log)_(10)9 d. (log)_(10)s in 25^0

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)