Home
Class 12
MATHS
If (log)(10)2=0. 30103 ,(log)(10)3=0. 47...

If `(log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 ,` then find the number of digits in `3^(12)x2^8dot`

Text Solution

Verified by Experts

Let ` y = 3^(12) xx 2^(8)`
` rArr log_(10) y = 12 log_(10) 3+ 8log_(10) 2`
` = 12 xx 0.47712 + 8 xx 0.30103`
` = 5.72544+ 2.40824`
` = 8.13368`
` :. ` Number of digits in y = 8 + 1 = 9.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.81|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.82|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.79|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18

Given ,log2=0.301 and log3=0.477, then the number of digits before decimal in 3^12times2^8 is

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

Let S denotes the antilog of 0.5 to the base 256 and K denotes the number of digits in 6^(10) (given log_(10)2=0.301 , log_(10)3=0.477 ) and G denotes the number of positive integers, which have the characteristic 2, when the base of logarithm is 3. The value of SKG is

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)