Home
Class 12
MATHS
Solve sqrt(log(-x)) = log sqrt(x^(2)) (...

Solve ` sqrt(log(-x)) = log sqrt(x^(2)) `(base is 10).

Text Solution

Verified by Experts

Since the equation can be satisfied only for ` x lt 0`, we have ` sqrt(x^(2)) = |x| =- x`.
So, givne equation reduces to
` sqrt(log(-x))= log(-x)`
` or log(-x) = [log(-x)]^(2)`
` or log(-x)[1-log(-x)]=0`
if ` log(-x) =0 rArr -x=1 rArr x =- 1`
if ` log_(10)(-x)=1 rArr -x=10 rArr x =- 10`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.6|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.7|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.4|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve sqrt("log"(-x))=logsqrt("x"^2) (base is 10).

Solve : 3^((log_9 x))xx2 = 3sqrt(3)

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

Solve : sqrt(1+log_(0.04)x)+sqrt(3+log_(0.2)x)=1

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

log(sqrt(x)+1/sqrt(x))

derivative of sqrt("log"x)

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is