Home
Class 12
MATHS
Find the value of 3^(2log(9)3)....

Find the value of `3^(2log_(9)3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 3^{2 \log_{9} 3} \), we can follow these steps: ### Step 1: Rewrite the logarithm We start with the expression: \[ y = 3^{2 \log_{9} 3} \] Using the change of base formula for logarithms, we can rewrite \( \log_{9} 3 \) as: \[ \log_{9} 3 = \frac{\log_{3} 3}{\log_{3} 9} \] Since \( \log_{3} 3 = 1 \) and \( \log_{3} 9 = \log_{3} (3^2) = 2 \log_{3} 3 = 2 \), we have: \[ \log_{9} 3 = \frac{1}{2} \] ### Step 2: Substitute back into the expression Now we can substitute \( \log_{9} 3 \) back into the expression for \( y \): \[ y = 3^{2 \cdot \frac{1}{2}} \] ### Step 3: Simplify the exponent This simplifies to: \[ y = 3^{1} \] ### Step 4: Calculate the final value Thus, we find: \[ y = 3 \] ### Final Answer The value of \( 3^{2 \log_{9} 3} \) is \( 3 \). ---

To solve the problem \( 3^{2 \log_{9} 3} \), we can follow these steps: ### Step 1: Rewrite the logarithm We start with the expression: \[ y = 3^{2 \log_{9} 3} \] Using the change of base formula for logarithms, we can rewrite \( \log_{9} 3 \) as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of (log)_2(2 9 3-2)+(log)_2(12 3 3+4+4 9 3)dot

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of (log)_(2sqrt(3))1728.

Find the value of (log)_(2sqrt(3))1728.

If log2=0.301 and log3=0.477, find the value of log(3.375).

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .