Home
Class 12
MATHS
Find the value of log(5) log(2)log(3) l...

Find the value of ` log_(5) log_(2)log_(3) log_(2) 512`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{5} \log_{2} \log_{3} \log_{2} 512 \), we will follow these steps: ### Step 1: Factorize 512 First, we need to express 512 in terms of powers of 2. \[ 512 = 2^9 \] ### Step 2: Apply the logarithm property Using the property of logarithms that states \( \log_{b}(m^n) = n \cdot \log_{b}(m) \), we can rewrite \( \log_{2} 512 \): \[ \log_{2} 512 = \log_{2} (2^9) = 9 \cdot \log_{2} 2 \] ### Step 3: Simplify \( \log_{2} 2 \) Since \( \log_{2} 2 = 1 \): \[ \log_{2} 512 = 9 \cdot 1 = 9 \] ### Step 4: Substitute back into the expression Now we substitute this value back into the expression: \[ \log_{5} \log_{2} \log_{3} 9 \] ### Step 5: Simplify \( \log_{3} 9 \) Next, we need to evaluate \( \log_{3} 9 \): \[ 9 = 3^2 \implies \log_{3} 9 = \log_{3} (3^2) = 2 \cdot \log_{3} 3 \] Since \( \log_{3} 3 = 1 \): \[ \log_{3} 9 = 2 \cdot 1 = 2 \] ### Step 6: Substitute again Now we substitute this value back: \[ \log_{5} \log_{2} 2 \] ### Step 7: Simplify \( \log_{2} 2 \) Again, since \( \log_{2} 2 = 1 \): \[ \log_{5} 1 \] ### Step 8: Evaluate \( \log_{5} 1 \) Finally, we know that: \[ \log_{b} 1 = 0 \quad \text{for any base } b \neq 1 \] Thus: \[ \log_{5} 1 = 0 \] ### Final Answer The value of \( \log_{5} \log_{2} \log_{3} \log_{2} 512 \) is: \[ \boxed{0} \]

To find the value of \( \log_{5} \log_{2} \log_{3} \log_{2} 512 \), we will follow these steps: ### Step 1: Factorize 512 First, we need to express 512 in terms of powers of 2. \[ 512 = 2^9 \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of : log_(0.2) 5

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Find the value of log_(2sqrt3) 1728 .

Find x if log_(2) log_(1//2) log_(3) x gt 0

Find the value of sqrt((log_(0.5)4)^(2)) .

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............