Home
Class 12
MATHS
Find the value of log(1//3)root(4)(729...

Find the value of `log_(1//3)root(4)(729*root(3)(9^(-1)*27^(-4//3)))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{(1/3)} \left( \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \right) \), we will break down the expression step by step. ### Step 1: Simplify the expression inside the logarithm We start with the expression: \[ \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \] ### Step 2: Simplify \( \sqrt[4]{729} \) We know that: \[ 729 = 3^6 \quad \text{(since \( 729 = 27^2 = (3^3)^2 = 3^6 \))} \] Thus, \[ \sqrt[4]{729} = \sqrt[4]{3^6} = 3^{6/4} = 3^{3/2} \] ### Step 3: Simplify \( \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \) First, we simplify \( 9^{-1} \) and \( 27^{-4/3} \): \[ 9 = 3^2 \quad \Rightarrow \quad 9^{-1} = (3^2)^{-1} = 3^{-2} \] \[ 27 = 3^3 \quad \Rightarrow \quad 27^{-4/3} = (3^3)^{-4/3} = 3^{-4} \] Now, we can combine these: \[ 9^{-1} \cdot 27^{-4/3} = 3^{-2} \cdot 3^{-4} = 3^{-2 - 4} = 3^{-6} \] Now, take the cube root: \[ \sqrt[3]{3^{-6}} = 3^{-6/3} = 3^{-2} \] ### Step 4: Combine the results Now we can combine the results from Steps 2 and 3: \[ \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} = 3^{3/2} \cdot 3^{-2} = 3^{3/2 - 2} = 3^{3/2 - 4/2} = 3^{-1/2} \] ### Step 5: Substitute back into the logarithm Now we substitute back into the logarithm: \[ \log_{(1/3)}(3^{-1/2}) \] ### Step 6: Use the logarithm property Using the property \( \log_a(b^c) = c \cdot \log_a(b) \): \[ \log_{(1/3)}(3^{-1/2}) = -\frac{1}{2} \cdot \log_{(1/3)}(3) \] ### Step 7: Calculate \( \log_{(1/3)}(3) \) Using the change of base formula: \[ \log_{(1/3)}(3) = \frac{\log(3)}{\log(1/3)} = \frac{\log(3)}{\log(3^{-1})} = \frac{\log(3)}{-\log(3)} = -1 \] ### Step 8: Final calculation Substituting back, we get: \[ -\frac{1}{2} \cdot (-1) = \frac{1}{2} \] ### Final Answer Thus, the value of \( \log_{(1/3)} \left( \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \right) \) is: \[ \frac{1}{2} \]

To find the value of \( \log_{(1/3)} \left( \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \right) \), we will break down the expression step by step. ### Step 1: Simplify the expression inside the logarithm We start with the expression: \[ \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

log_(1//3)sqrt(729*root(3)(9^(- 1)*27^(-4//3))) is equal to

Find the value of : log _ 3 27

log_(3)root(9)(3)=

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

Write the value of root(3)(125)\ xx\ root(3)(27)

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

Evaluate: int root(3)(x)root(3)(1+root(3)(x^(4)))dx

Find the cube-roots of : 729

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of 9^(1/3), 9^(1/9). 9^(1/27)...up to oo.