Home
Class 12
MATHS
Solve log(6) 9-log(9) 27 + log(8)x = log...

Solve `log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4`..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{6} 9 - \log_{9} 27 + \log_{8} x = \log_{64} x - \log_{6} 4 \), we will use properties of logarithms step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the property \( \log_{a} b = \frac{\log b}{\log a} \), we can rewrite the logarithms: \[ \log_{6} 9 = \frac{\log 9}{\log 6}, \quad \log_{9} 27 = \frac{\log 27}{\log 9}, \quad \log_{8} x = \frac{\log x}{\log 8}, \quad \log_{64} x = \frac{\log x}{\log 64}, \quad \log_{6} 4 = \frac{\log 4}{\log 6} \] Substituting these into the equation gives: \[ \frac{\log 9}{\log 6} - \frac{\log 27}{\log 9} + \frac{\log x}{\log 8} = \frac{\log x}{\log 64} - \frac{\log 4}{\log 6} \] ### Step 2: Rearranging the equation Now, we can rearrange the equation to group the terms involving \( \log x \): \[ \frac{\log 9}{\log 6} + \frac{\log 4}{\log 6} + \frac{\log x}{\log 8} - \frac{\log x}{\log 64} = \frac{\log 27}{\log 9} \] This simplifies to: \[ \frac{\log 9 + \log 4}{\log 6} + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{\log 27}{\log 9} \] ### Step 3: Combine the logarithms Using the property \( \log a + \log b = \log(ab) \): \[ \frac{\log(9 \times 4)}{\log 6} + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{\log 27}{\log 9} \] Calculating \( 9 \times 4 = 36 \): \[ \frac{\log 36}{\log 6} + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{\log 27}{\log 9} \] ### Step 4: Simplifying \( \log 27 \) and \( \log 36 \) Now, we know \( \log 36 = \log(6^2) = 2 \log 6 \) and \( \log 27 = \log(3^3) = 3 \log 3 \): \[ \frac{2 \log 6}{\log 6} + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{3 \log 3}{\log 9} \] This simplifies to: \[ 2 + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{3 \log 3}{2 \log 3} \] Since \( \log 9 = 2 \log 3 \), we have: \[ 2 + \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{3}{2} \] ### Step 5: Isolate \( \log x \) Rearranging gives: \[ \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = \frac{3}{2} - 2 \] This simplifies to: \[ \left(\frac{1}{\log 8} - \frac{1}{\log 64}\right) \log x = -\frac{1}{2} \] ### Step 6: Solve for \( \log x \) Now, we can solve for \( \log x \): \[ \log x = -\frac{1}{2} \cdot \frac{1}{\left(\frac{1}{\log 8} - \frac{1}{\log 64}\right)} \] ### Step 7: Calculate \( x \) Finally, we can exponentiate to find \( x \): \[ x = 8^{-1} = \frac{1}{8} \] Thus, the solution is: \[ \boxed{\frac{1}{8}} \]

To solve the equation \( \log_{6} 9 - \log_{9} 27 + \log_{8} x = \log_{64} x - \log_{6} 4 \), we will use properties of logarithms step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the property \( \log_{a} b = \frac{\log b}{\log a} \), we can rewrite the logarithms: \[ \log_{6} 9 = \frac{\log 9}{\log 6}, \quad \log_{9} 27 = \frac{\log 27}{\log 9}, \quad \log_{8} x = \frac{\log x}{\log 8}, \quad \log_{64} x = \frac{\log x}{\log 64}, \quad \log_{6} 4 = \frac{\log 4}{\log 6} \] Substituting these into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2

If "log"_(2) a + "log"_(4) b + "log"_(4) c = 2 "log"_(9) a + "log"_(3) b + "log"_(9) c = 2 "log"_(16) a + "log"_(16) b + "log"_(4) c =2 , then

Solve log_(4)(x-1)= log_(2) (x-3) .