Home
Class 12
MATHS
Solve : 3logx(4)+ 2log(4x)4+3log(16x)4=0...

Solve : `3log_x(4)+ 2log_(4x)4+3log_(16x)4=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3\log_x(4) + 2\log_{4x}(4) + 3\log_{16x}(4) = 0\), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms that states \(\log_a(b) = \frac{1}{\log_b(a)}\), we can rewrite the logarithmic terms: \[ 3\log_x(4) = \frac{3}{\log_4(x)}, \quad 2\log_{4x}(4) = \frac{2}{\log_4(4x)}, \quad 3\log_{16x}(4) = \frac{3}{\log_4(16x)} \] ### Step 2: Simplify the logarithmic expressions Now, we can simplify \(\log_4(4x)\) and \(\log_4(16x)\): \[ \log_4(4x) = \log_4(4) + \log_4(x) = 1 + \log_4(x) \] \[ \log_4(16x) = \log_4(16) + \log_4(x) = 2 + \log_4(x) \quad \text{(since } 16 = 4^2\text{)} \] ### Step 3: Substitute back into the equation Substituting these back into the equation gives us: \[ \frac{3}{\log_4(x)} + \frac{2}{1 + \log_4(x)} + \frac{3}{2 + \log_4(x)} = 0 \] ### Step 4: Let \(t = \log_4(x)\) Let \(t = \log_4(x)\). Then, we can rewrite the equation as: \[ \frac{3}{t} + \frac{2}{1 + t} + \frac{3}{2 + t} = 0 \] ### Step 5: Find a common denominator The common denominator for the fractions is \(t(1 + t)(2 + t)\). Thus, we can rewrite the equation: \[ 3(1 + t)(2 + t) + 2t(2 + t) + 3t(1 + t) = 0 \] ### Step 6: Expand the equation Expanding each term: 1. \(3(1 + t)(2 + t) = 3(2 + 3t + t^2) = 6 + 9t + 3t^2\) 2. \(2t(2 + t) = 4t + 2t^2\) 3. \(3t(1 + t) = 3t + 3t^2\) Combining these gives: \[ (3t^2 + 2t^2 + 3t^2) + (9t + 4t + 3t) + 6 = 0 \] This simplifies to: \[ 8t^2 + 16t + 6 = 0 \] ### Step 7: Divide the equation by 2 To simplify, divide the entire equation by 2: \[ 4t^2 + 8t + 3 = 0 \] ### Step 8: Factor the quadratic equation Now we need to factor or use the quadratic formula to solve for \(t\): Using the quadratic formula \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 4\), \(b = 8\), and \(c = 3\): \[ t = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot 3}}{2 \cdot 4} = \frac{-8 \pm \sqrt{64 - 48}}{8} = \frac{-8 \pm \sqrt{16}}{8} = \frac{-8 \pm 4}{8} \] Calculating the two possible values for \(t\): 1. \(t = \frac{-4}{8} = -\frac{1}{2}\) 2. \(t = \frac{-12}{8} = -\frac{3}{2}\) ### Step 9: Solve for \(x\) Recall that \(t = \log_4(x)\): 1. For \(t = -\frac{1}{2}\): \[ \log_4(x) = -\frac{1}{2} \implies x = 4^{-\frac{1}{2}} = \frac{1}{\sqrt{4}} = \frac{1}{2} \] 2. For \(t = -\frac{3}{2}\): \[ \log_4(x) = -\frac{3}{2} \implies x = 4^{-\frac{3}{2}} = \frac{1}{4^{3/2}} = \frac{1}{(2^2)^{3/2}} = \frac{1}{2^3} = \frac{1}{8} \] ### Final Solution Thus, the solutions for \(x\) are: \[ x = \frac{1}{2} \quad \text{and} \quad x = \frac{1}{8} \]

To solve the equation \(3\log_x(4) + 2\log_{4x}(4) + 3\log_{16x}(4) = 0\), we will follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms that states \(\log_a(b) = \frac{1}{\log_b(a)}\), we can rewrite the logarithmic terms: \[ 3\log_x(4) = \frac{3}{\log_4(x)}, \quad 2\log_{4x}(4) = \frac{2}{\log_4(4x)}, \quad 3\log_{16x}(4) = \frac{3}{\log_4(16x)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Solve : log_4(log_3(log_2x))=0

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Solve : 6((log)_x2-(log)_4x)+7=0.

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .