Home
Class 12
MATHS
Solve(log(3)x)(log(5)9)- logx 25 + log(3...

Solve`(log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\log_{3} x)(\log_{5} 9) - \log_{x} 25 + \log_{3} 2 = \log_{3} 54\), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can rewrite the logarithms: \[ \log_{3} x = \frac{\log x}{\log 3}, \quad \log_{5} 9 = \frac{\log 9}{\log 5}, \quad \log_{x} 25 = \frac{\log 25}{\log x}, \quad \log_{3} 2 = \frac{\log 2}{\log 3}, \quad \log_{3} 54 = \frac{\log 54}{\log 3} \] Substituting these into the equation gives: \[ \left(\frac{\log x}{\log 3}\right) \left(\frac{\log 9}{\log 5}\right) - \frac{\log 25}{\log x} + \frac{\log 2}{\log 3} = \frac{\log 54}{\log 3} \] ### Step 2: Simplify the equation Rearranging the equation, we have: \[ \frac{\log x \cdot \log 9}{\log 3 \cdot \log 5} - \frac{\log 25}{\log x} + \frac{\log 2}{\log 3} = \frac{\log 54}{\log 3} \] Next, we can multiply through by \(\log 3 \cdot \log x\) to eliminate the denominators: \[ \log x \cdot \log 9 - \log 25 \cdot \log 3 + \log 2 \cdot \log x = \log 54 \cdot \log x \] ### Step 3: Combine like terms Rearranging gives: \[ \log x \cdot \log 9 + \log 2 \cdot \log x - \log 54 \cdot \log x = \log 25 \cdot \log 3 \] Factoring out \(\log x\): \[ \log x (\log 9 + \log 2 - \log 54) = \log 25 \cdot \log 3 \] ### Step 4: Simplify the logarithmic expression Using the property \(\log a + \log b = \log(ab)\) and \(\log a - \log b = \log\left(\frac{a}{b}\right)\): \[ \log x \left(\log(18) - \log(54)\right) = \log 25 \cdot \log 3 \] Thus, \[ \log x \cdot \log\left(\frac{18}{54}\right) = \log 25 \cdot \log 3 \] This simplifies to: \[ \log x \cdot \log\left(\frac{1}{3}\right) = \log 25 \cdot \log 3 \] ### Step 5: Solve for \(\log x\) Dividing both sides by \(\log\left(\frac{1}{3}\right)\): \[ \log x = \frac{\log 25 \cdot \log 3}{\log\left(\frac{1}{3}\right)} \] Since \(\log\left(\frac{1}{3}\right) = -\log 3\): \[ \log x = -\frac{\log 25}{1} = -\log 25 \] Thus, \[ x = 10^{-\log 25} = \frac{1}{25} \] ### Step 6: Final answer The solution to the equation is: \[ x = \frac{1}{25} \]

To solve the equation \((\log_{3} x)(\log_{5} 9) - \log_{x} 25 + \log_{3} 2 = \log_{3} 54\), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can rewrite the logarithms: \[ \log_{3} x = \frac{\log x}{\log 3}, \quad \log_{5} 9 = \frac{\log 9}{\log 5}, \quad \log_{x} 25 = \frac{\log 25}{\log x}, \quad \log_{3} 2 = \frac{\log 2}{\log 3}, \quad \log_{3} 54 = \frac{\log 54}{\log 3} \] Substituting these into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

Solve log_(3)|x|gt 2 .

Solve log_(4)(x-1)= log_(2) (x-3) .

If (log_(3)x)(log_(5)3)=3 , find x.

Solve log_(2)|x| lt 3