Home
Class 12
MATHS
Solve (x^(log(10)3))^(2) - (3^(log(10)x)...

Solve `(x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0`.

Text Solution

Verified by Experts

The correct Answer is:
` x = 10^(log_(3^(2)))`

Let `(x^(log_(10)3))=(3^(log_(10)x))=t`
Therefore, the given equation is
` t^(2) - t-2=0 or (t-2)(t+1) =0 `
` rArr t = 2" "("as t =- 1 is not possible")`
`rArr(3^(log_(10)x)) = 2`
` or log_(10)x = log_(3) 2`
` or x = 10^(log_(3)2)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

Solve for x: (2x)^(log_(b) 2) = (3x)^(log_(b)3) .

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve log_(2)|x| lt 3

Solve 3^((log_(9)x)^(2)-9/2log_(9)x+5)= 3 sqrt3.

Solve log_(10)(x^(2)-2x-2) le 0 .

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve log_(3x -2) x^(2) gt log _(3x-2) (3x -2)