Home
Class 12
MATHS
Solve log(2).(x-4)/(2x+5) lt 1....

Solve `log_(2).(x-4)/(2x+5) lt 1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_2 \left( \frac{x-4}{2x+5} \right) < 1 \), we will follow these steps: ### Step 1: Determine the domain of the logarithmic function The logarithm is defined when its argument is positive. Therefore, we need: \[ \frac{x-4}{2x+5} > 0 \] This implies that both the numerator \(x - 4\) and the denominator \(2x + 5\) must either be both positive or both negative. ### Step 2: Find the critical points 1. Set \(x - 4 = 0\) to find when the numerator is zero: \[ x = 4 \] 2. Set \(2x + 5 = 0\) to find when the denominator is zero: \[ 2x + 5 = 0 \implies x = -\frac{5}{2} \] ### Step 3: Test intervals around the critical points We will test the intervals determined by the critical points \(x = -\frac{5}{2}\) and \(x = 4\): - Interval 1: \( (-\infty, -\frac{5}{2}) \) - Interval 2: \( (-\frac{5}{2}, 4) \) - Interval 3: \( (4, \infty) \) **Testing Interval 1: \(x = -3\)** \[ \frac{-3 - 4}{2(-3) + 5} = \frac{-7}{-6 + 5} = \frac{-7}{-1} = 7 > 0 \quad \text{(Positive)} \] **Testing Interval 2: \(x = 0\)** \[ \frac{0 - 4}{2(0) + 5} = \frac{-4}{5} < 0 \quad \text{(Negative)} \] **Testing Interval 3: \(x = 5\)** \[ \frac{5 - 4}{2(5) + 5} = \frac{1}{10} > 0 \quad \text{(Positive)} \] ### Step 4: Combine results from the intervals From the tests, we find: - The expression is positive in the intervals \( (-\infty, -\frac{5}{2}) \) and \( (4, \infty) \). ### Step 5: Solve the inequality \( \log_2 \left( \frac{x-4}{2x+5} \right) < 1 \) This can be rewritten using the property of logarithms: \[ \frac{x-4}{2x+5} < 2 \] ### Step 6: Rearranging the inequality Rearranging gives: \[ \frac{x-4}{2x+5} - 2 < 0 \implies \frac{x-4 - 2(2x + 5)}{2x + 5} < 0 \] This simplifies to: \[ \frac{x - 4 - 4x - 10}{2x + 5} < 0 \implies \frac{-3x - 14}{2x + 5} < 0 \] ### Step 7: Find critical points for the new inequality Set the numerator and denominator to zero: 1. \( -3x - 14 = 0 \implies x = -\frac{14}{3} \) 2. \( 2x + 5 = 0 \implies x = -\frac{5}{2} \) ### Step 8: Test intervals for the new inequality We will test the intervals determined by \(x = -\frac{14}{3}\) and \(x = -\frac{5}{2}\): - Interval 1: \( (-\infty, -\frac{14}{3}) \) - Interval 2: \( (-\frac{14}{3}, -\frac{5}{2}) \) - Interval 3: \( (-\frac{5}{2}, \infty) \) **Testing Interval 1: \(x = -5\)** \[ \frac{-3(-5) - 14}{2(-5) + 5} = \frac{15 - 14}{-10 + 5} = \frac{1}{-5} < 0 \quad \text{(Negative)} \] **Testing Interval 2: \(x = -4\)** \[ \frac{-3(-4) - 14}{2(-4) + 5} = \frac{12 - 14}{-8 + 5} = \frac{-2}{-3} > 0 \quad \text{(Positive)} \] **Testing Interval 3: \(x = 0\)** \[ \frac{-3(0) - 14}{2(0) + 5} = \frac{-14}{5} < 0 \quad \text{(Negative)} \] ### Step 9: Combine results from the new intervals The expression is negative in the intervals \( (-\infty, -\frac{14}{3}) \) and \( (-\frac{5}{2}, \infty) \). ### Step 10: Combine both conditions The solution must satisfy both conditions: 1. \( (-\infty, -\frac{5}{2}) \cup (4, \infty) \) 2. \( (-\infty, -\frac{14}{3}) \cup (-\frac{5}{2}, \infty) \) The combined solution is: \[ x \in (-\infty, -\frac{14}{3}) \cup (4, \infty) \] ### Final Answer \[ x \in (-\infty, -\frac{14}{3}) \cup (4, \infty) \] ---

To solve the inequality \( \log_2 \left( \frac{x-4}{2x+5} \right) < 1 \), we will follow these steps: ### Step 1: Determine the domain of the logarithmic function The logarithm is defined when its argument is positive. Therefore, we need: \[ \frac{x-4}{2x+5} > 0 \] This implies that both the numerator \(x - 4\) and the denominator \(2x + 5\) must either be both positive or both negative. ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|50 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Solve log_(2)(x-1) gt 4 .

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve log_(1//3)(x^(2)-3x+5)lt -1

Solve 2^(log_(2)(x-1))gtx+5 .

Solve 1 lt log_(2)(x-2) le 2 .

Solve log_(2)|x| lt 3

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve log_(2)|x-1| lt 1 .

Solve: (log)_3(2x^2+6x-5)>1