Home
Class 12
MATHS
Consider the system of equations log(...

Consider the system of equations
` log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9`.
The value of 1/y lies in the interval

A

`(5, 7)`

B

`(7, 10)`

C

`(11, 15)`

D

`(25, 30)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equations**: \[ \log_{3}(\log_{2} x) + \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = 1 \] \[ xy^{2} = 9 \] 2. **Rewriting the first equation**: We know that \(\log_{\frac{1}{3}} a = -\log_{3} a\). Therefore, we can rewrite the first equation as: \[ \log_{3}(\log_{2} x) - \log_{3}(\log_{\frac{1}{2}} y) = 1 \] 3. **Using the property of logarithms**: The property \(\log_{a} b - \log_{a} c = \log_{a} \left(\frac{b}{c}\right)\) allows us to combine the logarithms: \[ \log_{3} \left(\frac{\log_{2} x}{\log_{\frac{1}{2}} y}\right) = 1 \] 4. **Exponentiating both sides**: This implies: \[ \frac{\log_{2} x}{\log_{\frac{1}{2}} y} = 3 \] 5. **Substituting \(\log_{\frac{1}{2}} y\)**: We know that \(\log_{\frac{1}{2}} y = -\log_{2} y\). Thus, we can rewrite the equation as: \[ \frac{\log_{2} x}{-\log_{2} y} = 3 \] This simplifies to: \[ \log_{2} x = -3 \log_{2} y \] 6. **Expressing \(x\) in terms of \(y\)**: From the above equation, we can express \(x\) as: \[ x = y^{-3} \] 7. **Substituting into the second equation**: Now, substituting \(x = y^{-3}\) into the second equation \(xy^{2} = 9\): \[ (y^{-3})y^{2} = 9 \] This simplifies to: \[ \frac{y^{2}}{y^{3}} = 9 \quad \Rightarrow \quad \frac{1}{y} = 9 \] 8. **Finding \(y\)**: Therefore, we have: \[ y = \frac{1}{9} \] 9. **Finding \(\frac{1}{y}\)**: Now, we need to find \(\frac{1}{y}\): \[ \frac{1}{y} = 9 \] 10. **Determining the interval**: We need to check in which interval \(9\) lies: - \(5\) to \(7\) (No) - \(7\) to \(10\) (Yes) - \(11\) to \(15\) (No) - \(25\) to \(30\) (No) Thus, the value of \(\frac{1}{y}\) lies in the interval \(7\) to \(10\).

To solve the given system of equations: 1. **Equations**: \[ \log_{3}(\log_{2} x) + \log_{\frac{1}{3}}(\log_{\frac{1}{2}} y) = 1 \] \[ xy^{2} = 9 ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Numerical Value Type|20 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Consider the system of equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y) =1 and xy^(2) = 9 . The value of x in the interval

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1