Home
Class 12
MATHS
2^((sqrt(loga(ab)^(1//4)+logb(ab)^(1//4)...

`2^((sqrt(log_a(ab)^(1//4)+log_b(ab)^(1//4))-sqrt(log_a(b/a)^(1//4)+log_b(a/b)^(1//4))) sqrt(log_a(b))` =

A

1

B

2

C

`2^(log_(a)b)`

D

` 2^(log_(b)a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2^{\left(\sqrt{\left(\log_a(ab)^{\frac{1}{4}} + \log_b(ab)^{\frac{1}{4}}\right)} - \sqrt{\left(\log_a\left(\frac{b}{a}\right)^{\frac{1}{4}} + \log_b\left(\frac{a}{b}\right)^{\frac{1}{4}}\right)}\right) \sqrt{\log_a(b)}} \), we will simplify the exponent step by step. ### Step 1: Simplify the logarithmic terms 1. **Calculate \( \log_a(ab) \)**: \[ \log_a(ab) = \log_a(a) + \log_a(b) = 1 + \log_a(b) \] Therefore, \[ \log_a(ab)^{\frac{1}{4}} = \left(1 + \log_a(b)\right)^{\frac{1}{4}} \] 2. **Calculate \( \log_b(ab) \)**: \[ \log_b(ab) = \log_b(a) + \log_b(b) = \log_b(a) + 1 \] Therefore, \[ \log_b(ab)^{\frac{1}{4}} = \left(\log_b(a) + 1\right)^{\frac{1}{4}} \] ### Step 2: Substitute back into the expression Now substitute these back into the original expression: \[ \sqrt{\left(1 + \log_a(b)\right)^{\frac{1}{4}} + \left(\log_b(a) + 1\right)^{\frac{1}{4}}} \] ### Step 3: Simplify the second logarithmic term 1. **Calculate \( \log_a\left(\frac{b}{a}\right) \)**: \[ \log_a\left(\frac{b}{a}\right) = \log_a(b) - \log_a(a) = \log_a(b) - 1 \] Therefore, \[ \log_a\left(\frac{b}{a}\right)^{\frac{1}{4}} = \left(\log_a(b) - 1\right)^{\frac{1}{4}} \] 2. **Calculate \( \log_b\left(\frac{a}{b}\right) \)**: \[ \log_b\left(\frac{a}{b}\right) = \log_b(a) - \log_b(b) = \log_b(a) - 1 \] Therefore, \[ \log_b\left(\frac{a}{b}\right)^{\frac{1}{4}} = \left(\log_b(a) - 1\right)^{\frac{1}{4}} \] ### Step 4: Substitute back into the expression Now substitute these back into the expression: \[ \sqrt{\left(\log_a(b) - 1\right)^{\frac{1}{4}} + \left(\log_b(a) - 1\right)^{\frac{1}{4}}} \] ### Step 5: Combine the terms Now, we can combine the terms: \[ \sqrt{\left(1 + \log_a(b)\right)^{\frac{1}{4}} + \left(\log_b(a) + 1\right)^{\frac{1}{4}} - \left(\log_a(b) - 1\right)^{\frac{1}{4}} - \left(\log_b(a) - 1\right)^{\frac{1}{4}}} \] ### Step 6: Final simplification After simplification, we can find that the entire exponent simplifies to: \[ \sqrt{\log_a(b)} \text{ and } \sqrt{\log_b(a)} \] Thus, the expression simplifies to: \[ 2^{\sqrt{\log_a(b) \cdot \log_b(a)}} \] ### Step 7: Conclusion Since \( \log_a(b) \cdot \log_b(a) = 1 \), we find: \[ 2^{1} = 2 \] ### Final Answer: The value of the expression is \( \boxed{2} \).

To solve the expression \( 2^{\left(\sqrt{\left(\log_a(ab)^{\frac{1}{4}} + \log_b(ab)^{\frac{1}{4}}\right)} - \sqrt{\left(\log_a\left(\frac{b}{a}\right)^{\frac{1}{4}} + \log_b\left(\frac{a}{b}\right)^{\frac{1}{4}}\right)}\right) \sqrt{\log_a(b)}} \), we will simplify the exponent step by step. ### Step 1: Simplify the logarithmic terms 1. **Calculate \( \log_a(ab) \)**: \[ \log_a(ab) = \log_a(a) + \log_a(b) = 1 + \log_a(b) \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Numerical Value Type|20 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2^((sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-sqrt((log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b) if 1

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

If log_a(ab)=x then log_b(ab) is equals to

Evaluate: log_(a^2) b-:log_sqrt(a)(b)^2

|{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,5sqrt(log_(5)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"

Which of the following numbers are non positive? (A) 5^(log_(11)7)-7(log_(11)5) (B) log_(3)(sqrt(7)-2) (C) log_(7)((1)/(2))^(-1//2) (D) log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If log_(5)((a+b)/(3))=(log_(5)a+log_(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2)b^(2))=

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)