Home
Class 12
MATHS
If log(4)A=log(6)B=log(9)(A+B)," then "[...

If `log_(4)A=log_(6)B=log_(9)(A+B)," then "[4(B//A)]("where "[*]` represents the greatest integer function ) equals _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given, we need to find the value of \([4(B/A)]\) where \([*]\) represents the greatest integer function, given that \( \log_{4} A = \log_{6} B = \log_{9} (A + B) \). ### Step-by-Step Solution: 1. **Set the common logarithm value**: Let \( x = \log_{4} A = \log_{6} B = \log_{9} (A + B) \). 2. **Express A and B in terms of x**: From the properties of logarithms: \[ A = 4^x \] \[ B = 6^x \] 3. **Express A + B**: Using the values of A and B: \[ A + B = 4^x + 6^x \] 4. **Express A + B in terms of logarithm**: Since \( \log_{9} (A + B) = x \), we can express \( A + B \) as: \[ A + B = 9^x \] 5. **Set up the equation**: Now we have: \[ 4^x + 6^x = 9^x \] 6. **Rewrite the equation**: We can rewrite \( 4^x \) and \( 9^x \) in terms of base 2 and base 3: \[ (2^2)^x + (2 \cdot 3)^x = (3^2)^x \] This simplifies to: \[ 2^{2x} + 2^x \cdot 3^x = 3^{2x} \] 7. **Divide through by \( 2^{2x} \)**: \[ 1 + \frac{3^x}{2^x} = \left(\frac{3}{2}\right)^{2x} \] 8. **Let \( t = \left(\frac{3}{2}\right)^x \)**: Then the equation becomes: \[ 1 + t = t^2 \] Rearranging gives: \[ t^2 - t - 1 = 0 \] 9. **Solve the quadratic equation**: Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{1 \pm \sqrt{5}}{2} \] We take the positive root: \[ t = \frac{1 + \sqrt{5}}{2} \] 10. **Substitute back to find A and B**: Since \( t = \left(\frac{3}{2}\right)^x \): \[ \left(\frac{3}{2}\right)^x = \frac{1 + \sqrt{5}}{2} \] 11. **Find \( \frac{B}{A} \)**: \[ \frac{B}{A} = \frac{6^x}{4^x} = \left(\frac{6}{4}\right)^x = \left(\frac{3}{2}\right)^x = t \] 12. **Calculate \( 4 \cdot \frac{B}{A} \)**: \[ 4 \cdot \frac{B}{A} = 4t = 4 \cdot \frac{1 + \sqrt{5}}{2} = 2(1 + \sqrt{5}) = 2 + 2\sqrt{5} \] 13. **Approximate \( 2 + 2\sqrt{5} \)**: Since \( \sqrt{5} \approx 2.236 \): \[ 2 + 2\sqrt{5} \approx 2 + 4.472 = 6.472 \] 14. **Apply the greatest integer function**: \[ [4(B/A)] = [6.472] = 6 \] ### Final Answer: The value of \([4(B/A)]\) is \( \boxed{6} \).

To solve the problem given, we need to find the value of \([4(B/A)]\) where \([*]\) represents the greatest integer function, given that \( \log_{4} A = \log_{6} B = \log_{9} (A + B) \). ### Step-by-Step Solution: 1. **Set the common logarithm value**: Let \( x = \log_{4} A = \log_{6} B = \log_{9} (A + B) \). 2. **Express A and B in terms of x**: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE MAIN|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (log)_4A=(log)_6B=(log)_9(A+B),t h e n [4(B/A)] (where [ ] represents the greatest integer function) equals ..............

int_(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest integer function)

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If log_4A = log_6B = log_9(A+B) then the value of B/A is

Evaluate int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1) .Here [.] represents the greatest integer function.

Draw the graph of f(x) = [log_(e)x], e^(-2) lt x lt 10 , where [*] represents the greatest integer function.

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

Drew the graph of y=cos^(-1)sqrt(log_([x])(|x|/x)) where [*] represents the greastest integer function.

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Numerical Value Type
  1. If log(a)b=2, log(b)c=2, and log(3) c= 3 + log(3) a,then the value of...

    Text Solution

    |

  2. The value of (log(10)2)^(3)+log(10)8 * log(10) 5 + (log(10)5)^(3) is .

    Text Solution

    |

  3. If log(4)A=log(6)B=log(9)(A+B)," then "[4(B//A)]("where "[*] represent...

    Text Solution

    |

  4. Integral value of x which satisfies the equation =log6 54+(log)x 16=(l...

    Text Solution

    |

  5. If a = log(245) 175 and b = log(1715) 875, then the value of (1-ab)/...

    Text Solution

    |

  6. The difference of roots of the equation (log(27)x^(3))^(2) = log(27x^(...

    Text Solution

    |

  7. Sum of integral values of x satisfying the inequality 3^((5/2)log3(12-...

    Text Solution

    |

  8. The least integer greater than log(2) 15* log(1//6 2* log(3) 1//6 is ...

    Text Solution

    |

  9. The reciprocal of 2/(log(4)(2000)^(6))+3/(log(5)(2000)^(6)) is .

    Text Solution

    |

  10. Sum of integers satisfying sqrt(log(2)x-1)-1//2 log(2)(x^(3))+2 gt 0 ...

    Text Solution

    |

  11. Number of integers satisfying the inequality log(1//2)|x-3| gt -1 i...

    Text Solution

    |

  12. Number of integers le 10 satisfying the inequality 2 log(1//2) (x-1)...

    Text Solution

    |

  13. The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is .

    Text Solution

    |

  14. The value of 5^((log)(1/5)(1/2))+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(lo...

    Text Solution

    |

  15. The value of N=((log)5 250)/((log)(50)5)-((log)5 10)/((log)(1250)5) is...

    Text Solution

    |

  16. if x+log10 (1+2^x)=xlog10 5+log10 6 then x

    Text Solution

    |

  17. The x , y , z are positive real numbers such that (log)(2x)z=3,(log)(5...

    Text Solution

    |

  18. If a=(log)(12)18 , b=(log)(24)54 , then find the value of a b+5(a-b)do...

    Text Solution

    |

  19. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  20. The value of ((log(2)9)^(2))^(1/(log(2)(log(2)9)))xx(sqrt7)^(1/(log(4...

    Text Solution

    |