Home
Class 12
MATHS
Integral value of x which satisfies the ...

Integral value of `x` which satisfies the equation `=log_6 54+(log)_x 16=(log)_(sqrt(2))x-(log)_(36)(4/9)i s ddot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_6 54 + \log_x 16 = \log_{\sqrt{2}} x - \log_{36} \left(\frac{4}{9}\right) \), we will follow these steps: ### Step 1: Simplify the Left Side We can rewrite the left side of the equation: \[ \log_6 54 + \log_x 16 = \log_6 (54) + \frac{\log 16}{\log x} \] Using the property of logarithms, \( \log_a b + \log_a c = \log_a (bc) \), we can express \( \log_6 54 \) as: \[ \log_6 (6 \cdot 9) = \log_6 6 + \log_6 9 = 1 + \log_6 9 \] Thus, the left side becomes: \[ 1 + \log_6 9 + \frac{4 \log 2}{\log x} \] ### Step 2: Simplify the Right Side Now, we simplify the right side: \[ \log_{\sqrt{2}} x - \log_{36} \left(\frac{4}{9}\right) \] We can rewrite \( \log_{\sqrt{2}} x \) using the change of base formula: \[ \log_{\sqrt{2}} x = \frac{\log x}{\log \sqrt{2}} = \frac{\log x}{\frac{1}{2} \log 2} = \frac{2 \log x}{\log 2} \] Next, we simplify \( \log_{36} \left(\frac{4}{9}\right) \): \[ \log_{36} \left(\frac{4}{9}\right) = \log_{36} \left(\frac{2^2}{3^2}\right) = \log_{36} (2^2) - \log_{36} (3^2) = \frac{2 \log 2}{\log 36} - \frac{2 \log 3}{\log 36} = \frac{2 (\log 2 - \log 3)}{\log 36} \] ### Step 3: Set the Equation Now we have: \[ 1 + \log_6 9 + \frac{4 \log 2}{\log x} = \frac{2 \log x}{\log 2} - \frac{2 (\log 2 - \log 3)}{\log 36} \] ### Step 4: Substitute and Solve for \( x \) Let \( t = \log x \). The equation becomes: \[ 1 + \log_6 9 + \frac{4 \log 2}{t} = \frac{2t}{\log 2} - \frac{2 (\log 2 - \log 3)}{\log 36} \] ### Step 5: Rearranging the Equation Rearranging gives: \[ \frac{4 \log 2}{t} + \frac{2 (\log 2 - \log 3)}{\log 36} + 1 + \log_6 9 = \frac{2t}{\log 2} \] ### Step 6: Solve the Quadratic Equation After simplifying, we can express this as a quadratic equation in terms of \( t \): \[ 2t^2 - 2t - 4 = 0 \] Dividing by 2: \[ t^2 - t - 2 = 0 \] Factoring gives: \[ (t - 2)(t + 1) = 0 \] Thus, \( t = 2 \) or \( t = -1 \). ### Step 7: Find \( x \) 1. If \( t = 2 \): \[ \log x = 2 \implies x = 2^2 = 4 \] 2. If \( t = -1 \): \[ \log x = -1 \implies x = 2^{-1} = \frac{1}{2} \] ### Final Answer The integral value of \( x \) that satisfies the equation is: \[ \boxed{4} \]

To solve the equation \( \log_6 54 + \log_x 16 = \log_{\sqrt{2}} x - \log_{36} \left(\frac{4}{9}\right) \), we will follow these steps: ### Step 1: Simplify the Left Side We can rewrite the left side of the equation: \[ \log_6 54 + \log_x 16 = \log_6 (54) + \frac{\log 16}{\log x} \] Using the property of logarithms, \( \log_a b + \log_a c = \log_a (bc) \), we can express \( \log_6 54 \) as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE MAIN|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the sum and product of all possible values of x which makes the following statement true. log_(6)54+log_x16=log_sqrt2x-log_36(4/9) .

Find all real numbers x which satisfy the equation 2(log)_2log\ _2x+(log)_(1//2)(log)_2(2sqrt(2)x)=1.

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Number of integral value (s) of 'x' satisfying the equation log_(1/5)(sec(pi/3)x+5)=log_5(1/(16-x^2))+tan ((13pi)/4) is

Number of real values of x satisfying the equation (log)_2(x^2-x)(log)_2((x-1)/x)+((log)_2x)^2=4,i s 0 (b) 2 (c) 3 (d) 7

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Numerical Value Type
  1. If log(a)b=2, log(b)c=2, and log(3) c= 3 + log(3) a,then the value of...

    Text Solution

    |

  2. The value of (log(10)2)^(3)+log(10)8 * log(10) 5 + (log(10)5)^(3) is .

    Text Solution

    |

  3. If log(4)A=log(6)B=log(9)(A+B)," then "[4(B//A)]("where "[*] represent...

    Text Solution

    |

  4. Integral value of x which satisfies the equation =log6 54+(log)x 16=(l...

    Text Solution

    |

  5. If a = log(245) 175 and b = log(1715) 875, then the value of (1-ab)/...

    Text Solution

    |

  6. The difference of roots of the equation (log(27)x^(3))^(2) = log(27x^(...

    Text Solution

    |

  7. Sum of integral values of x satisfying the inequality 3^((5/2)log3(12-...

    Text Solution

    |

  8. The least integer greater than log(2) 15* log(1//6 2* log(3) 1//6 is ...

    Text Solution

    |

  9. The reciprocal of 2/(log(4)(2000)^(6))+3/(log(5)(2000)^(6)) is .

    Text Solution

    |

  10. Sum of integers satisfying sqrt(log(2)x-1)-1//2 log(2)(x^(3))+2 gt 0 ...

    Text Solution

    |

  11. Number of integers satisfying the inequality log(1//2)|x-3| gt -1 i...

    Text Solution

    |

  12. Number of integers le 10 satisfying the inequality 2 log(1//2) (x-1)...

    Text Solution

    |

  13. The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is .

    Text Solution

    |

  14. The value of 5^((log)(1/5)(1/2))+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(lo...

    Text Solution

    |

  15. The value of N=((log)5 250)/((log)(50)5)-((log)5 10)/((log)(1250)5) is...

    Text Solution

    |

  16. if x+log10 (1+2^x)=xlog10 5+log10 6 then x

    Text Solution

    |

  17. The x , y , z are positive real numbers such that (log)(2x)z=3,(log)(5...

    Text Solution

    |

  18. If a=(log)(12)18 , b=(log)(24)54 , then find the value of a b+5(a-b)do...

    Text Solution

    |

  19. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  20. The value of ((log(2)9)^(2))^(1/(log(2)(log(2)9)))xx(sqrt7)^(1/(log(4...

    Text Solution

    |