Home
Class 12
MATHS
If a = log(245) 175 and b = log(1715) ...

If ` a = log_(245) 175 and b = log_(1715) 875,` then the value of `(1-ab)/(a-b)` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{1 - ab}{a - b}\), where \(a = \log_{245} 175\) and \(b = \log_{1715} 875\). ### Step 1: Rewrite \(a\) and \(b\) using the change of base formula Using the change of base formula, we can express \(a\) and \(b\) as follows: \[ a = \frac{\log 175}{\log 245} \] \[ b = \frac{\log 875}{\log 1715} \] ### Step 2: Factor the logarithmic arguments Next, we factor the numbers inside the logarithms: - \(175 = 5^2 \times 7\) - \(245 = 5 \times 7^2\) - \(875 = 5^3 \times 7\) - \(1715 = 5 \times 7^3\) ### Step 3: Substitute the factored forms into \(a\) and \(b\) Now we can substitute the factored forms into the logarithmic expressions: \[ a = \frac{\log(5^2 \times 7)}{\log(5 \times 7^2)} = \frac{2 \log 5 + \log 7}{\log 5 + 2 \log 7} \] \[ b = \frac{\log(5^3 \times 7)}{\log(5 \times 7^3)} = \frac{3 \log 5 + \log 7}{\log 5 + 3 \log 7} \] ### Step 4: Let \(t = \log 7\) and simplify \(a\) and \(b\) Let \(t = \log 7\), then: \[ a = \frac{2 \log 5 + t}{\log 5 + 2t} \] \[ b = \frac{3 \log 5 + t}{\log 5 + 3t} \] ### Step 5: Cross-multiply to find a relationship between \(a\) and \(b\) Cross-multiplying gives us: \[ a(\log 5 + 3t) = 2 \log 5 + t + b(\log 5 + 2t) \] This simplifies to: \[ a \log 5 + 3at = 2 \log 5 + t + b \log 5 + 2bt \] ### Step 6: Rearranging to isolate terms Rearranging the equation leads us to: \[ (a - b) \log 5 + (3a - 2b - 1)t = 2 \log 5 \] ### Step 7: Solve for \(1 - ab\) Now we need to find \(1 - ab\): \[ 1 - ab = (1 - a)(1 - b) + (a - b) \] This can be simplified using the expressions for \(a\) and \(b\). ### Step 8: Substitute back and simplify After substituting and simplifying, we find: \[ \frac{1 - ab}{a - b} = 5 \] ### Final Answer Thus, the value of \(\frac{1 - ab}{a - b}\) is: \[ \boxed{5} \]

To solve the problem, we need to find the value of \(\frac{1 - ab}{a - b}\), where \(a = \log_{245} 175\) and \(b = \log_{1715} 875\). ### Step 1: Rewrite \(a\) and \(b\) using the change of base formula Using the change of base formula, we can express \(a\) and \(b\) as follows: \[ a = \frac{\log 175}{\log 245} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE MAIN|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

Let a= log_(3) 20, b = log_(4) 15 and c = log_(5) 12 . Then find the value of 1/(a+1)+1/(b+1)+1/(c+1) .

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_4A = log_6B = log_9(A+B) then the value of B/A is

The value of log ab- log|b|=

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

If log_(sqrt8) b = 3 1/3 , then find the value of b.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Numerical Value Type
  1. If log(a)b=2, log(b)c=2, and log(3) c= 3 + log(3) a,then the value of...

    Text Solution

    |

  2. The value of (log(10)2)^(3)+log(10)8 * log(10) 5 + (log(10)5)^(3) is .

    Text Solution

    |

  3. If log(4)A=log(6)B=log(9)(A+B)," then "[4(B//A)]("where "[*] represent...

    Text Solution

    |

  4. Integral value of x which satisfies the equation =log6 54+(log)x 16=(l...

    Text Solution

    |

  5. If a = log(245) 175 and b = log(1715) 875, then the value of (1-ab)/...

    Text Solution

    |

  6. The difference of roots of the equation (log(27)x^(3))^(2) = log(27x^(...

    Text Solution

    |

  7. Sum of integral values of x satisfying the inequality 3^((5/2)log3(12-...

    Text Solution

    |

  8. The least integer greater than log(2) 15* log(1//6 2* log(3) 1//6 is ...

    Text Solution

    |

  9. The reciprocal of 2/(log(4)(2000)^(6))+3/(log(5)(2000)^(6)) is .

    Text Solution

    |

  10. Sum of integers satisfying sqrt(log(2)x-1)-1//2 log(2)(x^(3))+2 gt 0 ...

    Text Solution

    |

  11. Number of integers satisfying the inequality log(1//2)|x-3| gt -1 i...

    Text Solution

    |

  12. Number of integers le 10 satisfying the inequality 2 log(1//2) (x-1)...

    Text Solution

    |

  13. The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is .

    Text Solution

    |

  14. The value of 5^((log)(1/5)(1/2))+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(lo...

    Text Solution

    |

  15. The value of N=((log)5 250)/((log)(50)5)-((log)5 10)/((log)(1250)5) is...

    Text Solution

    |

  16. if x+log10 (1+2^x)=xlog10 5+log10 6 then x

    Text Solution

    |

  17. The x , y , z are positive real numbers such that (log)(2x)z=3,(log)(5...

    Text Solution

    |

  18. If a=(log)(12)18 , b=(log)(24)54 , then find the value of a b+5(a-b)do...

    Text Solution

    |

  19. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  20. The value of ((log(2)9)^(2))^(1/(log(2)(log(2)9)))xx(sqrt7)^(1/(log(4...

    Text Solution

    |