Home
Class 12
MATHS
The least integer greater than log(2) 1...

The least integer greater than ` log_(2) 15* log_(1//6 2* log_(3) 1//6` is _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \log_2 15 \cdot \log_{1/6} 2 \cdot \log_{3} \frac{1}{6} \) and find the least integer greater than this value. ### Step-by-step Solution: 1. **Rewrite the logarithms using properties**: We know that \( \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \). Using this property, we can rewrite the logarithms in terms of a common base (let's use base 10 for simplicity). \[ \log_2 15 = \frac{\log_{10} 15}{\log_{10} 2} \] \[ \log_{1/6} 2 = \frac{\log_{10} 2}{\log_{10} (1/6)} = \frac{\log_{10} 2}{-\log_{10} 6} \] \[ \log_{3} \frac{1}{6} = \frac{\log_{10} (1/6)}{\log_{10} 3} = \frac{-\log_{10} 6}{\log_{10} 3} \] 2. **Substituting back into the expression**: Now substituting these back into the original expression: \[ \log_2 15 \cdot \log_{1/6} 2 \cdot \log_{3} \frac{1}{6} = \left(\frac{\log_{10} 15}{\log_{10} 2}\right) \cdot \left(\frac{\log_{10} 2}{-\log_{10} 6}\right) \cdot \left(\frac{-\log_{10} 6}{\log_{10} 3}\right) \] 3. **Simplifying the expression**: Notice that \( \log_{10} 2 \) and \( -\log_{10} 6 \) cancel out: \[ = \frac{\log_{10} 15}{\log_{10} 3} \] 4. **Evaluating \( \log_{10} 15 \)**: We can express \( 15 \) as \( 3 \cdot 5 \): \[ \log_{10} 15 = \log_{10} (3 \cdot 5) = \log_{10} 3 + \log_{10} 5 \] 5. **Final expression**: Thus, we have: \[ = \frac{\log_{10} 3 + \log_{10} 5}{\log_{10} 3} \] This simplifies to: \[ = 1 + \frac{\log_{10} 5}{\log_{10} 3} \] 6. **Estimating the value**: We know that \( \log_{10} 3 \approx 0.477 \) and \( \log_{10} 5 \approx 0.699 \). Therefore: \[ \frac{\log_{10} 5}{\log_{10} 3} \approx \frac{0.699}{0.477} \approx 1.465 \] So: \[ 1 + \frac{\log_{10} 5}{\log_{10} 3} \approx 1 + 1.465 \approx 2.465 \] 7. **Finding the least integer greater than the value**: The least integer greater than \( 2.465 \) is \( 3 \). ### Final Answer: The least integer greater than \( \log_2 15 \cdot \log_{1/6} 2 \cdot \log_{3} \frac{1}{6} \) is **3**.

To solve the problem, we need to evaluate the expression \( \log_2 15 \cdot \log_{1/6} 2 \cdot \log_{3} \frac{1}{6} \) and find the least integer greater than this value. ### Step-by-step Solution: 1. **Rewrite the logarithms using properties**: We know that \( \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \). Using this property, we can rewrite the logarithms in terms of a common base (let's use base 10 for simplicity). \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE MAIN|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove that log_7 11 is greater than log_(8)5 .

The greatest integer less than or equal to the number log_2(15)xx log_(1/6)2xx log_3(1/6) is

log_3 2, log_6 2, log_12 2 are in

Sum of integers satisfying sqrt(log_(2)x-1)-1//2 log_(2)(x^(3))+2 gt 0 is ________.

The value of x, log_(1/2)x >= log_(1/3)x is

The domain of the function f(x) = log_(3/2) log_(1/2)log_pi log_(pi/4) x is

Len n be an integer greater than 1 and let a_(n)=(1)/(log_(n)1001). If b=a_(3)+a_(4)+a_(5)+a_(6)and c=_(11)+a_(12)+a_(13)+a_(14)+a_(15). Than value of (b-c) is equal to

Number of integers le 10 satisfying the inequality 2 log_(1//2) (x-1) le 1/3 - 1/(log_(x^(2)-x)8) is ________.

The reciprocal of 2/(log_(4)(2000)^(6))+3/(log_(5)(2000)^(6)) is _______.

The domain of the function: f(x)=log_(3) [-(log_(3) x)^(2)+5 log_3x-6]" is :"

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Numerical Value Type
  1. If log(a)b=2, log(b)c=2, and log(3) c= 3 + log(3) a,then the value of...

    Text Solution

    |

  2. The value of (log(10)2)^(3)+log(10)8 * log(10) 5 + (log(10)5)^(3) is .

    Text Solution

    |

  3. If log(4)A=log(6)B=log(9)(A+B)," then "[4(B//A)]("where "[*] represent...

    Text Solution

    |

  4. Integral value of x which satisfies the equation =log6 54+(log)x 16=(l...

    Text Solution

    |

  5. If a = log(245) 175 and b = log(1715) 875, then the value of (1-ab)/...

    Text Solution

    |

  6. The difference of roots of the equation (log(27)x^(3))^(2) = log(27x^(...

    Text Solution

    |

  7. Sum of integral values of x satisfying the inequality 3^((5/2)log3(12-...

    Text Solution

    |

  8. The least integer greater than log(2) 15* log(1//6 2* log(3) 1//6 is ...

    Text Solution

    |

  9. The reciprocal of 2/(log(4)(2000)^(6))+3/(log(5)(2000)^(6)) is .

    Text Solution

    |

  10. Sum of integers satisfying sqrt(log(2)x-1)-1//2 log(2)(x^(3))+2 gt 0 ...

    Text Solution

    |

  11. Number of integers satisfying the inequality log(1//2)|x-3| gt -1 i...

    Text Solution

    |

  12. Number of integers le 10 satisfying the inequality 2 log(1//2) (x-1)...

    Text Solution

    |

  13. The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is .

    Text Solution

    |

  14. The value of 5^((log)(1/5)(1/2))+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(lo...

    Text Solution

    |

  15. The value of N=((log)5 250)/((log)(50)5)-((log)5 10)/((log)(1250)5) is...

    Text Solution

    |

  16. if x+log10 (1+2^x)=xlog10 5+log10 6 then x

    Text Solution

    |

  17. The x , y , z are positive real numbers such that (log)(2x)z=3,(log)(5...

    Text Solution

    |

  18. If a=(log)(12)18 , b=(log)(24)54 , then find the value of a b+5(a-b)do...

    Text Solution

    |

  19. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  20. The value of ((log(2)9)^(2))^(1/(log(2)(log(2)9)))xx(sqrt7)^(1/(log(4...

    Text Solution

    |