Home
Class 12
MATHS
The value of N=((log)5 250)/((log)(50)5)...

The value of `N=((log)_5 250)/((log)_(50)5)-((log)_5 10)/((log)_(1250)5)` is...........

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( N = \frac{\log_5 250}{\log_{50} 5} - \frac{\log_5 10}{\log_{1250} 5} \), we can use the properties of logarithms to simplify the expression step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we know that: \[ \log_a b = \frac{1}{\log_b a} \] Thus, we can rewrite \( \log_{50} 5 \) and \( \log_{1250} 5 \): \[ \log_{50} 5 = \frac{1}{\log_5 50} \quad \text{and} \quad \log_{1250} 5 = \frac{1}{\log_5 1250} \] So, we can rewrite \( N \) as: \[ N = \log_5 250 \cdot \log_5 50 - \log_5 10 \cdot \log_5 1250 \] ### Step 2: Simplify \( \log_5 250 \) and \( \log_5 10 \) Next, we simplify \( \log_5 250 \) and \( \log_5 10 \): \[ \log_5 250 = \log_5 (5^3 \cdot 2) = \log_5 5^3 + \log_5 2 = 3 + \log_5 2 \] \[ \log_5 10 = \log_5 (5 \cdot 2) = \log_5 5 + \log_5 2 = 1 + \log_5 2 \] ### Step 3: Simplify \( \log_5 50 \) and \( \log_5 1250 \) Now we simplify \( \log_5 50 \) and \( \log_5 1250 \): \[ \log_5 50 = \log_5 (5^2 \cdot 2) = \log_5 5^2 + \log_5 2 = 2 + \log_5 2 \] \[ \log_5 1250 = \log_5 (5^4 \cdot 2) = \log_5 5^4 + \log_5 2 = 4 + \log_5 2 \] ### Step 4: Substitute back into \( N \) Now substituting these values back into \( N \): \[ N = (3 + \log_5 2)(2 + \log_5 2) - (1 + \log_5 2)(4 + \log_5 2) \] ### Step 5: Expand both products Expanding both products: \[ N = (3 \cdot 2 + 3 \log_5 2 + 2 \log_5 2 + (\log_5 2)^2) - (1 \cdot 4 + 1 \log_5 2 + 4 \log_5 2 + (\log_5 2)^2) \] \[ N = (6 + 5 \log_5 2 + (\log_5 2)^2) - (4 + 5 \log_5 2 + (\log_5 2)^2) \] ### Step 6: Simplify the expression Now, simplifying the expression: \[ N = 6 - 4 + 5 \log_5 2 - 5 \log_5 2 + (\log_5 2)^2 - (\log_5 2)^2 \] \[ N = 2 \] ### Final Answer Thus, the value of \( N \) is: \[ \boxed{2} \]

To find the value of \( N = \frac{\log_5 250}{\log_{50} 5} - \frac{\log_5 10}{\log_{1250} 5} \), we can use the properties of logarithms to simplify the expression step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we know that: \[ \log_a b = \frac{1}{\log_b a} \] Thus, we can rewrite \( \log_{50} 5 \) and \( \log_{1250} 5 \): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE MAIN|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise JEE ADVANCED|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

The value of 6^(log_10 40)*5^(log_10 36) is

Find the value of : log _5 0.2

Find the value of : log _ 5 ,625

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Numerical Value Type
  1. If log(a)b=2, log(b)c=2, and log(3) c= 3 + log(3) a,then the value of...

    Text Solution

    |

  2. The value of (log(10)2)^(3)+log(10)8 * log(10) 5 + (log(10)5)^(3) is .

    Text Solution

    |

  3. If log(4)A=log(6)B=log(9)(A+B)," then "[4(B//A)]("where "[*] represent...

    Text Solution

    |

  4. Integral value of x which satisfies the equation =log6 54+(log)x 16=(l...

    Text Solution

    |

  5. If a = log(245) 175 and b = log(1715) 875, then the value of (1-ab)/...

    Text Solution

    |

  6. The difference of roots of the equation (log(27)x^(3))^(2) = log(27x^(...

    Text Solution

    |

  7. Sum of integral values of x satisfying the inequality 3^((5/2)log3(12-...

    Text Solution

    |

  8. The least integer greater than log(2) 15* log(1//6 2* log(3) 1//6 is ...

    Text Solution

    |

  9. The reciprocal of 2/(log(4)(2000)^(6))+3/(log(5)(2000)^(6)) is .

    Text Solution

    |

  10. Sum of integers satisfying sqrt(log(2)x-1)-1//2 log(2)(x^(3))+2 gt 0 ...

    Text Solution

    |

  11. Number of integers satisfying the inequality log(1//2)|x-3| gt -1 i...

    Text Solution

    |

  12. Number of integers le 10 satisfying the inequality 2 log(1//2) (x-1)...

    Text Solution

    |

  13. The value of (sqrt(3+2sqrt2)+sqrt(3-2sqrt2))^(2^(9)) is .

    Text Solution

    |

  14. The value of 5^((log)(1/5)(1/2))+(log)(sqrt(2))4/(sqrt(7)+sqrt(3))+(lo...

    Text Solution

    |

  15. The value of N=((log)5 250)/((log)(50)5)-((log)5 10)/((log)(1250)5) is...

    Text Solution

    |

  16. if x+log10 (1+2^x)=xlog10 5+log10 6 then x

    Text Solution

    |

  17. The x , y , z are positive real numbers such that (log)(2x)z=3,(log)(5...

    Text Solution

    |

  18. If a=(log)(12)18 , b=(log)(24)54 , then find the value of a b+5(a-b)do...

    Text Solution

    |

  19. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  20. The value of ((log(2)9)^(2))^(1/(log(2)(log(2)9)))xx(sqrt7)^(1/(log(4...

    Text Solution

    |