Home
Class 12
MATHS
Let P(3,2,6) be a point in space and Q b...

Let `P(3,2,6)` be a point in space and `Q` be a point on line ` vec r=( hat i- hat j+2 hat k)+mu(-3 hat i+ hat j+5 hat k)dot` Then the value of `mu` for which the vector ` vec P Q` is parallel to the plane `x-4y+3z=1` is a. 1/4 b. -1/4 c. 1/8 d. -1/8

A

`1//4`

B

`-1//4`

C

`1//8`

D

`-1//8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first determine the coordinates of point Q on the given line and then find the vector PQ. Finally, we will use the condition for parallelism with the given plane to find the value of mu. ### Step 1: Define the points Let \( P(3, 2, 6) \) be the point in space. The point \( Q \) lies on the line defined by the equation: \[ \vec{r} = \hat{i} - \hat{j} + 2\hat{k} + \mu(-3\hat{i} + \hat{j} + 5\hat{k}). \] From this, we can express the coordinates of point \( Q \): \[ Q = (1 - 3\mu, -1 + \mu, 2 + 5\mu). \] ### Step 2: Find the vector \( \vec{PQ} \) The vector \( \vec{PQ} \) can be found using the coordinates of points \( P \) and \( Q \): \[ \vec{PQ} = Q - P = \left( (1 - 3\mu) - 3, (-1 + \mu) - 2, (2 + 5\mu) - 6 \right). \] This simplifies to: \[ \vec{PQ} = (-2 - 3\mu, -3 + \mu, -4 + 5\mu). \] ### Step 3: Find the normal vector of the plane The equation of the plane is given by: \[ x - 4y + 3z = 1. \] The normal vector \( \vec{n} \) to this plane is: \[ \vec{n} = (1, -4, 3). \] ### Step 4: Use the condition for parallelism For the vector \( \vec{PQ} \) to be parallel to the plane, it must be perpendicular to the normal vector \( \vec{n} \). This means that their dot product must be zero: \[ \vec{PQ} \cdot \vec{n} = 0. \] Calculating the dot product: \[ (-2 - 3\mu)(1) + (-3 + \mu)(-4) + (-4 + 5\mu)(3) = 0. \] Expanding this gives: \[ -2 - 3\mu + 12 - 4\mu - 12 + 15\mu = 0. \] Combining like terms: \[ (15\mu - 3\mu - 4\mu) + (-2 + 12 - 12) = 0, \] which simplifies to: \[ 8\mu - 2 = 0. \] ### Step 5: Solve for \( \mu \) Now, we can solve for \( \mu \): \[ 8\mu = 2 \implies \mu = \frac{2}{8} = \frac{1}{4}. \] ### Conclusion Thus, the value of \( \mu \) for which the vector \( \vec{PQ} \) is parallel to the plane \( x - 4y + 3z = 1 \) is: \[ \mu = \frac{1}{4}. \]

To solve the problem step by step, we will first determine the coordinates of point Q on the given line and then find the vector PQ. Finally, we will use the condition for parallelism with the given plane to find the value of mu. ### Step 1: Define the points Let \( P(3, 2, 6) \) be the point in space. The point \( Q \) lies on the line defined by the equation: \[ \vec{r} = \hat{i} - \hat{j} + 2\hat{k} + \mu(-3\hat{i} + \hat{j} + 5\hat{k}). \] From this, we can express the coordinates of point \( Q \): ...
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES MULTIPLE CORRECT ANSWERS TYPE|4 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES REASONING TYPE|2 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the plane: vec rdot((2 hat i-3 hat j+4 hat k)=1\ a n d\ vec rdot((- hat i+ hat j)=4 .

If vec p=5 hat i+lambda hat j-3 hat k\ a n d\ vec q= hat i+3 hat j-5 hat k , then find the value of lambda such that vec p+ vec q and vec p- vec q are perpendicular vectors.

If vec p=5 hat i+lambda hat j-3 hat k and vec q= hat i+3 hat j-5 hat k , then find the value of lambda , so that vec p+ vec q and vec p- vec q are perpendicular vectors.

If the planes vec rdot( hat i+ hat j+ hat k)=q_1, vec rdot( hat i+2a hat j+ hat k)=q_2a n d vec rdot(a hat i+a^2 hat j+ hat k)=q_3 intersect in a line, then the value of a is a. 1 b. 1//2 c. 2 d. 0

Determine the shortest distance between the pair of lines : vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d\ vec r=(2 hat i- hat k)+mu(2 hat i+2 hat k)dot

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.

If vec a=x hat i+2 hat j-\ z hat k and vec b=3 hat i-\ y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

Find the distance of the point (-1,-5,-10) from the point of intersection of line vec r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane vec r ( hat i- hat j+ hat k)=5.

Write the value of p for which vec a=3 hat i+2 hat j+9 hat k\ a n d\ vec b= hat i+p hat j+3 hat k are parallel vectors.

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c