Home
Class 12
MATHS
Solve x >sqrt((z-5))-sqrt(9-z)>1,x in Z...

Solve `x >sqrt((z-5))-sqrt(9-z)>1,x in Zdot`

Text Solution

Verified by Experts

`sqrt(x- 5 )-sqrt(9-x ) gt 1, ` is meaningful ,if
`x- 5 ge 0 " and "9 - x ge 0`
`rArr x in [ 5, 9]`
Thus , the integral values of x are 5,6,7,8,9 of these only x= 9 stisfies the given inequality .
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Solved Exp|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve sqrt((x-5))-sqrt(9-x)>1,x in Zdot

Solve x >sqrt((1-x))

Solve x >sqrt((1-x))

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

Solve sqrt(5)x^2+x+sqrt(5)=0 .

Solve for x. x=sqrt(20)xxsqrt5

Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

Solve for x. x=sqrt(20)div sqrt5

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.