Home
Class 12
MATHS
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)...

Prove that `sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x<-1 2x,-1lt=xlt=1 2,x >1`

Text Solution

AI Generated Solution

To prove the equation \[ \sqrt{x^2 + 2x + 1} - \sqrt{x^2 - 2x + 1} = \begin{cases} -2 & \text{if } x < -1 \\ 2x & \text{if } -1 \leq x \leq 1 \\ 2 & \text{if } x > 1 ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Solved Exp|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1) ={ -2, x 1 }

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/2-(sin^(-1)x)/2,""0 < x < 1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

Prove that sqrt ((1- cos 2x)/( 1 + cos 2x )) = tan x, x in I or III quad.

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))