Home
Class 12
MATHS
Solve |x^2-x-2|+|x+6|=|x^2-2x-8|...

Solve `|x^2-x-2|+|x+6|=|x^2-2x-8|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |x^2 - x - 2| + |x + 6| = |x^2 - 2x - 8| \), we will analyze the expressions inside the absolute values and determine the intervals where each expression is positive or negative. ### Step 1: Identify the critical points First, we need to find the points where each expression inside the absolute values equals zero. 1. For \( x^2 - x - 2 = 0 \): \[ (x - 2)(x + 1) = 0 \implies x = 2, -1 \] 2. For \( x + 6 = 0 \): \[ x = -6 \] 3. For \( x^2 - 2x - 8 = 0 \): \[ (x - 4)(x + 2) = 0 \implies x = 4, -2 \] The critical points are \( -6, -2, -1, 2, 4 \). ### Step 2: Determine the intervals The critical points divide the number line into the following intervals: 1. \( (-\infty, -6) \) 2. \( (-6, -2) \) 3. \( (-2, -1) \) 4. \( (-1, 2) \) 5. \( (2, 4) \) 6. \( (4, \infty) \) ### Step 3: Analyze each interval We will evaluate the signs of the expressions in each interval. 1. **Interval \( (-\infty, -6) \)**: - \( x^2 - x - 2 > 0 \) - \( x + 6 < 0 \) - \( x^2 - 2x - 8 > 0 \) \[ |x^2 - x - 2| + |x + 6| = (x^2 - x - 2) - (x + 6) = x^2 - 2x - 8 \] This holds true. 2. **Interval \( (-6, -2) \)**: - \( x^2 - x - 2 > 0 \) - \( x + 6 > 0 \) - \( x^2 - 2x - 8 > 0 \) \[ |x^2 - x - 2| + |x + 6| = (x^2 - x - 2) + (x + 6) = x^2 + 4 \] This does not hold. 3. **Interval \( (-2, -1) \)**: - \( x^2 - x - 2 > 0 \) - \( x + 6 > 0 \) - \( x^2 - 2x - 8 < 0 \) \[ |x^2 - x - 2| + |x + 6| = (x^2 - x - 2) + (x + 6) = x^2 + 4 \] This does not hold. 4. **Interval \( (-1, 2) \)**: - \( x^2 - x - 2 < 0 \) - \( x + 6 > 0 \) - \( x^2 - 2x - 8 < 0 \) \[ |x^2 - x - 2| + |x + 6| = -(x^2 - x - 2) + (x + 6) = -x^2 + 2x + 8 \] This holds true. 5. **Interval \( (2, 4) \)**: - \( x^2 - x - 2 > 0 \) - \( x + 6 > 0 \) - \( x^2 - 2x - 8 < 0 \) \[ |x^2 - x - 2| + |x + 6| = (x^2 - x - 2) + (x + 6) = x^2 + 4 \] This does not hold. 6. **Interval \( (4, \infty) \)**: - \( x^2 - x - 2 > 0 \) - \( x + 6 > 0 \) - \( x^2 - 2x - 8 > 0 \) \[ |x^2 - x - 2| + |x + 6| = (x^2 - x - 2) + (x + 6) = x^2 + 4 \] This holds true. ### Step 4: Combine the intervals The solution to the equation is the union of the intervals where the equation holds true: \[ x \in (-\infty, -6) \cup (-1, 2) \cup (4, \infty) \] ### Final Solution Thus, the final solution is: \[ x \in (-\infty, -6) \cup (-1, 2) \cup (4, \infty) \]

To solve the equation \( |x^2 - x - 2| + |x + 6| = |x^2 - 2x - 8| \), we will analyze the expressions inside the absolute values and determine the intervals where each expression is positive or negative. ### Step 1: Identify the critical points First, we need to find the points where each expression inside the absolute values equals zero. 1. For \( x^2 - x - 2 = 0 \): \[ (x - 2)(x + 1) = 0 \implies x = 2, -1 ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise EXERCISES|30 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve |x^2-2x-8|=2x

Solve |x^2+x-6 |lt 6

Solve 6x^(2)-x-2=0 .

Solve x^2 +x-6=0

Solve: x/2-x/3=8

Solve 8x^(2)-16x=0 .

Solve : |x^(2)-x-6|=x+2 , x in R

solve: |x-2|+|x-4| ge 8

Solve [x]^(2)-5[x]+6=0.

Solve (6x^2-5x-3)/(x^2-2x+6)le 4