Home
Class 12
MATHS
Solve |x^2-1|+|x^2-4| gt 3...

Solve `|x^2-1|+|x^2-4| gt 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x^2 - 1| + |x^2 - 4| > 3 \), we will follow these steps: ### Step 1: Identify critical points The expressions inside the absolute values are \( x^2 - 1 \) and \( x^2 - 4 \). We need to find the points where these expressions are zero: - \( x^2 - 1 = 0 \) gives \( x = \pm 1 \) - \( x^2 - 4 = 0 \) gives \( x = \pm 2 \) Thus, the critical points are \( -2, -1, 1, 2 \). ### Step 2: Analyze intervals We will analyze the sign of the expressions in the intervals defined by the critical points: 1. \( (-\infty, -2) \) 2. \( (-2, -1) \) 3. \( (-1, 1) \) 4. \( (1, 2) \) 5. \( (2, \infty) \) ### Step 3: Evaluate each interval 1. **Interval \( (-\infty, -2) \)**: - Choose \( x = -3 \): - \( x^2 - 1 = 9 - 1 = 8 \) (positive) - \( x^2 - 4 = 9 - 4 = 5 \) (positive) - Thus, \( |x^2 - 1| + |x^2 - 4| = 8 + 5 = 13 > 3 \) (satisfied) 2. **Interval \( (-2, -1) \)**: - Choose \( x = -1.5 \): - \( x^2 - 1 = 2.25 - 1 = 1.25 \) (positive) - \( x^2 - 4 = 2.25 - 4 = -1.75 \) (negative) - Thus, \( |x^2 - 1| + |x^2 - 4| = 1.25 + 1.75 = 3 \) (not satisfied) 3. **Interval \( (-1, 1) \)**: - Choose \( x = 0 \): - \( x^2 - 1 = 0 - 1 = -1 \) (negative) - \( x^2 - 4 = 0 - 4 = -4 \) (negative) - Thus, \( |x^2 - 1| + |x^2 - 4| = 1 + 4 = 5 > 3 \) (satisfied) 4. **Interval \( (1, 2) \)**: - Choose \( x = 1.5 \): - \( x^2 - 1 = 2.25 - 1 = 1.25 \) (positive) - \( x^2 - 4 = 2.25 - 4 = -1.75 \) (negative) - Thus, \( |x^2 - 1| + |x^2 - 4| = 1.25 + 1.75 = 3 \) (not satisfied) 5. **Interval \( (2, \infty) \)**: - Choose \( x = 3 \): - \( x^2 - 1 = 9 - 1 = 8 \) (positive) - \( x^2 - 4 = 9 - 4 = 5 \) (positive) - Thus, \( |x^2 - 1| + |x^2 - 4| = 8 + 5 = 13 > 3 \) (satisfied) ### Step 4: Combine the intervals From our analysis, the solution intervals are: - \( (-\infty, -2) \) - \( (-1, 1) \) - \( (2, \infty) \) ### Final Solution The solution to the inequality \( |x^2 - 1| + |x^2 - 4| > 3 \) is: \[ x \in (-\infty, -2) \cup (-1, 1) \cup (2, \infty) \]

To solve the inequality \( |x^2 - 1| + |x^2 - 4| > 3 \), we will follow these steps: ### Step 1: Identify critical points The expressions inside the absolute values are \( x^2 - 1 \) and \( x^2 - 4 \). We need to find the points where these expressions are zero: - \( x^2 - 1 = 0 \) gives \( x = \pm 1 \) - \( x^2 - 4 = 0 \) gives \( x = \pm 2 \) Thus, the critical points are \( -2, -1, 1, 2 \). ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise EXERCISES|30 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve : x^(2)- |x+2|+x gt 0

Solve |x+1|+|2x-3|=4.

Solve the following |x^2-1|+|x^2-4|lt=3

Solve x^2-x-2 gt 0.

Solve |2^x-1|+| 4-2^x| lt 3

Solve : | x - 1| + |x - 2| + | x - 3 | gt 6

Solve : | x - 1| + |x - 2| + | x - 3 | gt 6

Solve (|x-1|)/(x+2) gt 1

Solve : |2x - 1| gt 2

Solve (x-1 )(x-2)(1-2x) gt 0