Home
Class 12
MATHS
f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),...

`f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):}` check limit at `x = 4` is.

Text Solution

AI Generated Solution

To solve the problem of finding the limit of the function \( f(x) = \frac{|x-4|}{2(x-4)} \) as \( x \) approaches 4, we will evaluate the left-hand limit and the right-hand limit separately. ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} \frac{|x-4|}{2(x-4)} & \text{if } x \neq 4 \\ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Check the continuity of f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

{{:((|x|)/(x)","if x ne 0 ),(0"," if x = 0 ):} Check continuity of f(x) at x = 0

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

Find the values of a and b sucht that the function f defined by f(x) = {{:((x-4)/(|x-4|)+a, if x lt 4),(a+b,if x =4),((x-4)/(|x-4|)+b, if x gt 4):} is a continous function at x = 4 .

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If f(x)={(x^2-16)/(x-4), if\ x!=4k\ ,if\ x=4 is continuous at x=4 , find kdot