Home
Class 12
MATHS
Let f(x)={{:(cos[x]", "xle0),(|x|+a", ...

Let `f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}.` Then find the value of a, so that `lim_(xto0) f(x)` exists, where [x] denotes the greatest integer function less than or equal to x.

Text Solution

Verified by Experts

Since `underset(xto0)limf(x)` exists, we have
`underset(xto0-)limf(x)=underset(xto0+)limf(x)`
or`""underset(hto0)limf(0-h)=underset(hto0)limf(0+h)`
or`" "underset(hto0)lim||0-h||+a=underset(hto0)cos[0+h]`
or`" "a=costheta=1`
`:." "a=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={cos[x],xgeq0|x|+a ,x 0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x .

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Examine Lim_(xto 2) [ x] , where [ x] denotes the greatest integar less than or equal to x.

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.