Home
Class 12
MATHS
Evaluate: lim(xto(5pi)/(4)) [sinx+cosx],...

Evaluate: `lim_(xto(5pi)/(4)) [sinx+cosx]`, [.] denotes the greatest integer function.

Text Solution

Verified by Experts

We have,
`L=underset(xto(5pi)/(4))lim[sinx+cosx]=underset(xto(5pi)/(4))lim[sqrt(2)sin(x+pi/4)]`
Now, `underset(xto(5pi)/(4)).[sqrt(2)sin(x+(pi)/(4))]=[sqrt(2)sin((3pi^(+))/(2))]=[-sqrt(2)]=-2`
And `underset(xto(5pi^(+))/(4))lim[sqrt(2)sin(x+(pi)/(4))]=[sqrt(2)sin((3pi^(-))/2)=[-sqrt(2)]=-2`
So, `L=-2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(x->(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Evaluate -int_(3pi//2)^(pi//2)[2sinx]dx , when [.] denotes the greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.