Home
Class 12
MATHS
Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0)...

Let `f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):}`
Find the LHL and RHL of g(f(x)) at x=0 and, hence, find `lim_(xto0) g(f(x)).`

Text Solution

Verified by Experts

`xrarr0^(-)impliesf(x)rarrf(0^(-))=2^(+)" "("using" f(x)=2-x)`
or `" "underset(xto0^(-))limg(f(x))=g(2^(+)-3" "("using" g(x)=x-5`)
Also, `xto0^(+)impliesf(x)torarrf(0^(+))=1^(+)" "("using" f(x)=x+1)`
or `" "underset(xto0^(+))limg(f(x))=g(1^(+))=-3" "("using" g(x)=x^(2)-2x-2)`
Hence, `underset(xto0)limg(f(x))` exists and is equal to -3. Therefore,
`underset(xto0)limg(f(x))=-3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1lexlt3),(x+2,3lexle5):} then, find f(g(x)) .

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).