Home
Class 12
MATHS
If lim(xtoa)[f(x)+g(x)]=2 and lim(xtoa) ...

If `lim_(xtoa)[f(x)+g(x)]=2` and `lim_(xtoa) [f(x)-g(x)]=1,` then find the value of `lim_(xtoa) f(x)g(x).`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( \lim_{x \to a} f(x)g(x) \) given the limits \( \lim_{x \to a} [f(x) + g(x)] = 2 \) and \( \lim_{x \to a} [f(x) - g(x)] = 1 \). ### Step-by-Step Solution: 1. **Define Limits**: Let: \[ \lim_{x \to a} f(x) = A \quad \text{and} \quad \lim_{x \to a} g(x) = B ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Evaluate lim_(xtoa) (logx-loga)/(x-a).

If lim_(xtoa)(a^(x)-x^(a))/(x^(x)-a^(a))=-1" and "agt0," then find the value of a."

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If lim_(x->0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(lim_(x->0)[1+(f(x))/x]^(1/x))i s____

Let f(a)=g(a)=k and their nth derivatives exist and be not equal for some n. If lim_(xtoa) (f(a)g(x)-f(a)-g(a)f(x)+g(a))/(g(x)-f(x))=4 then find the value of k.